Single-cell factors of tuberculosis drug tolerance during adaptation to environmental stressors
适应环境应激过程中结核病耐药性的单细胞因素
基本信息
- 批准号:10376226
- 负责人:
- 金额:$ 70.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic susceptibilityAntibioticsAutomobile DrivingBehaviorBinding ProteinsBloodCarbonCause of DeathCell CycleCell Cycle ProgressionCell Cycle RegulationCell SizeCell divisionCell physiologyCellsCellular biologyCharacteristicsClinicalComplexDataDrug DesignDrug TargetingDrug ToleranceEnvironmentExhibitsGeneticGenus MycobacteriumGoalsGranulomaGrowthHeterogeneityHumanImage AnalysisImpairmentIndividualInfectionLesionLinezolidLungMeasurementMeasuresMediatingMitotic Cell CycleModelingMycobacterium tuberculosisNutrientOutcomePathogenicityPatient IsolatorsPatientsPatternPharmaceutical PreparationsPhasePopulationPredispositionProcessRegimenRelapseReplication InitiationReplication-Associated ProcessReporterRifampinRoleSourceStressStructureTestingTherapeutic InterventionTimeTissuesTreatment ProtocolsTreatment outcomeTuberculosisVariantWorkantibiotic tolerancebasecell growthclinically relevantcytokinedesigndrug sensitivityenvironmental stressorexperimental studyimprovedinsightinterdisciplinary approachknock-downlive cell imaginglive cell microscopymacrophagemathematical modelmodels and simulationmycobacterialnon-tuberculosis mycobacterianovelpathogenic bacteriapreconditioningpublic health relevancerational designresidencestressortargeted treatmenttherapeutic developmenttooltreatment optimizationtuberculosis drugstuberculosis treatment
项目摘要
Project Summary
Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb). TB requires a lengthy multidrug
treatment and remains difficult to treat because there is considerable drug tolerance among Mtb in the host. To
rationally design drug regimens for tuberculosis, we need to understand how Mtb creates and maintains a
population structure that generates individuals with diverse drug sensitivities. Mycobacteria exhibit cell-to-cell
heterogeneity in fundamental features of their cell physiologies, arising from a deterministic, asymmetric growth
and division pattern. This unique growth pattern creates variation in cell size, growth rate, and partitioning of
cellular components. Mycobacterial cell size provides critical insight into cell physiology because cell size is
tightly connected to antibiotic sensitivity. Mtb alter their cell size distributions under different environmental
stressors that are encountered in the host. Despite the key role of stresses during the interactions of pathogenic
Mtb and the host, studies of single-cell growth, cell cycle progression, cell size control, and drug susceptibility
have been conducted in non-pathogenic, non-Mtb mycobacteria under nutrient-replete growth conditions. A lack
of understanding of the details involved in environment-specific control of Mtb cell size and cell population
structure is a critical experimental gap that must be bridged to enter into a new phase of designing TB therapies
that target drug tolerant subpopulations. To bridge this gap, we seek to understand how Mtb cell growth and
replication processes are mediated in various environmental conditions encountered in host tissues and how
these characteristics determine antibiotic susceptibility. A systematic, quantitative approach is key to
understanding how mycobacteria tolerate antibiotic stress and will allow us to rationally design more effective
TB regimens. In this project, we will investigate the process by which Mtb adapt cell size control to different
growth environments encountered during host infection and quantitatively characterize in detail the distinct
subpopulations of drug-tolerant Mtb. We will use a combination of live-cell microscopy, fluorescent markers, and
image analysis. We will integrate these quantitative analyses into mathematical models to rigorously test cellular
strategies of cell growth and division. Our multidisciplinary approach will quantify the relationships between cell
size and cell cycle progression with drug susceptibility in distinct elemental stress conditions of the host
environment. To connect Mtb growth features and variation to treatment outcome in humans, our experiments
will focus on clinical isolates from patients that were cured or relapsed. We anticipate that these models will form
the basis from which to create optimized treatment regimens that target emerging drug-tolerant subpopulations
using different combinations of existing antibiotics.
项目摘要
结核病是由结核分枝杆菌感染引起的。结核病需要长时间的多种药物
而且仍然很难治疗,因为在宿主中结核杆菌之间存在相当大的耐药性。至
合理设计治疗结核病的药物方案,我们需要了解结核分枝杆菌是如何产生和维持
产生具有不同药物敏感性的个体的种群结构。分枝杆菌呈现细胞间传播
细胞生理的基本特征的异质性,源于确定性的、不对称的生长
和分工模式。这种独特的生长模式在细胞大小、生长速度和分区方面产生了变化
蜂窝组件。分枝杆菌细胞大小提供了对细胞生理学的关键洞察,因为细胞大小
与抗生素敏感性密切相关。结核分枝杆菌在不同环境下细胞大小分布的变化
在宿主体内遇到的压力源。尽管应激在致病菌的相互作用中起着关键作用
单细胞生长、细胞周期进程、细胞大小控制和药物敏感性的研究
已经在营养充足的生长条件下在非致病性、非结核分枝杆菌中进行了研究。匮乏
了解特定环境控制结核分枝杆菌细胞大小和细胞数量所涉及的细节
结构是一个关键的实验鸿沟,必须弥合才能进入设计结核病治疗的新阶段
以耐药亚群为目标。为了弥补这一差距,我们试图了解结核分枝杆菌细胞如何生长和
复制过程在宿主组织中遇到的各种环境条件中被介导,以及如何
这些特性决定了抗生素的敏感性。系统的、量化的方法是关键
了解分枝杆菌如何耐受抗生素压力,将使我们能够合理地设计出更有效的
结核病治疗方案。在这个项目中,我们将研究Mtb使信元大小控制适应不同的过程
在宿主感染过程中遇到的生长环境,并详细定量地描述了不同的
耐药结核分枝杆菌亚群。我们将使用活细胞显微镜、荧光标记和
图像分析。我们将把这些定量分析集成到数学模型中,以严格测试细胞
细胞生长和分裂的策略。我们的多学科方法将量化细胞之间的关系
寄主在不同元素胁迫条件下的大小和细胞周期进程与药物敏感性的关系
环境。为了将结核杆菌的生长特征和变异与人类的治疗结果联系起来,我们的实验
将重点放在治愈或复发患者的临床分离株上。我们预计这些模式将形成
创建针对新出现的耐药亚群的优化治疗方案的基础
使用现有抗生素的不同组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bree Beardsley Aldridge其他文献
Bree Beardsley Aldridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bree Beardsley Aldridge', 18)}}的其他基金
Deep spatial immune profiling of granulomas and M. tuberculosis adaptation to disease and treatment
肉芽肿和结核分枝杆菌对疾病和治疗的适应的深度空间免疫分析
- 批准号:
10536685 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Deep spatial immune profiling of granulomas and M. tuberculosis adaptation to disease and treatment
肉芽肿和结核分枝杆菌对疾病和治疗的适应的深度空间免疫分析
- 批准号:
10358111 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Single-cell factors of tuberculosis drug tolerance during adaptation to environmental stressors
适应环境应激过程中结核病耐药性的单细胞因素
- 批准号:
9884178 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
Lesion-centric optimization of multidrug therapies for tuberculosis
以病变为中心的结核病多药治疗优化
- 批准号:
10543134 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
Single-cell factors of tuberculosis drug tolerance during adaptation to environmental stressors
适应环境应激过程中结核病耐药性的单细胞因素
- 批准号:
10590745 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
Lesion-centric optimization of multidrug therapies for tuberculosis
以病变为中心的结核病多药治疗优化
- 批准号:
10319547 - 财政年份:2020
- 资助金额:
$ 70.82万 - 项目类别:
Quantitative Design of Multi-drug Regiments for Tuberculosis
结核病多药方案的定量设计
- 批准号:
8570145 - 财政年份:2013
- 资助金额:
$ 70.82万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
Studentship