Single-cell factors of tuberculosis drug tolerance during adaptation to environmental stressors

适应环境应激过程中结核病耐药性的单细胞因素

基本信息

  • 批准号:
    9884178
  • 负责人:
  • 金额:
    $ 70.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb). TB requires a lengthy multidrug treatment and remains difficult to treat because there is considerable drug tolerance among Mtb in the host. To rationally design drug regimens for tuberculosis, we need to understand how Mtb creates and maintains a population structure that generates individuals with diverse drug sensitivities. Mycobacteria exhibit cell-to-cell heterogeneity in fundamental features of their cell physiologies, arising from a deterministic, asymmetric growth and division pattern. This unique growth pattern creates variation in cell size, growth rate, and partitioning of cellular components. Mycobacterial cell size provides critical insight into cell physiology because cell size is tightly connected to antibiotic sensitivity. Mtb alter their cell size distributions under different environmental stressors that are encountered in the host. Despite the key role of stresses during the interactions of pathogenic Mtb and the host, studies of single-cell growth, cell cycle progression, cell size control, and drug susceptibility have been conducted in non-pathogenic, non-Mtb mycobacteria under nutrient-replete growth conditions. A lack of understanding of the details involved in environment-specific control of Mtb cell size and cell population structure is a critical experimental gap that must be bridged to enter into a new phase of designing TB therapies that target drug tolerant subpopulations. To bridge this gap, we seek to understand how Mtb cell growth and replication processes are mediated in various environmental conditions encountered in host tissues and how these characteristics determine antibiotic susceptibility. A systematic, quantitative approach is key to understanding how mycobacteria tolerate antibiotic stress and will allow us to rationally design more effective TB regimens. In this project, we will investigate the process by which Mtb adapt cell size control to different growth environments encountered during host infection and quantitatively characterize in detail the distinct subpopulations of drug-tolerant Mtb. We will use a combination of live-cell microscopy, fluorescent markers, and image analysis. We will integrate these quantitative analyses into mathematical models to rigorously test cellular strategies of cell growth and division. Our multidisciplinary approach will quantify the relationships between cell size and cell cycle progression with drug susceptibility in distinct elemental stress conditions of the host environment. To connect Mtb growth features and variation to treatment outcome in humans, our experiments will focus on clinical isolates from patients that were cured or relapsed. We anticipate that these models will form the basis from which to create optimized treatment regimens that target emerging drug-tolerant subpopulations using different combinations of existing antibiotics.
项目摘要 结核病(TB)是由结核分枝杆菌(Mtb)感染引起的。结核病需要长期的多药治疗 由于宿主中的Mtb存在相当大的药物耐受性,因此仍然难以治疗。到 合理设计结核病的药物治疗方案,我们需要了解Mtb如何创造和维持一个 人口结构,产生不同的药物敏感性的个人。分枝杆菌表现出细胞间 它们细胞生理学基本特征的异质性,由确定性、不对称生长引起, 和分裂模式。这种独特的生长模式造成细胞大小、生长速率和细胞内蛋白质分配的变化。 细胞成分。分枝杆菌细胞大小提供了对细胞生理学的重要见解,因为细胞大小是 与抗生素敏感性密切相关。MTB在不同的环境中改变其细胞大小分布 宿主遇到的压力源。尽管压力在病原体相互作用中发挥着关键作用, 结核病与宿主,单细胞生长,细胞周期进程,细胞大小控制和药物敏感性的研究 已经在营养充足的生长条件下在非致病性非Mtb分枝杆菌中进行。缺乏 了解环境特异性控制结核分枝杆菌细胞大小和细胞群的细节 结构是一个关键的实验空白,必须弥合这一空白,才能进入设计结核病疗法的新阶段 针对耐药亚群的药物。为了弥合这一差距,我们试图了解结核分枝杆菌细胞的生长和 复制过程是在宿主组织中遇到的各种环境条件下介导的, 这些特征决定了抗生素的敏感性。系统的、定量的方法是关键, 了解分枝杆菌如何耐受抗生素压力,将使我们能够合理地设计更有效的 结核病治疗方案。在这个项目中,我们将研究结核分枝杆菌适应细胞大小控制的过程,以不同的 生长环境中遇到的主机感染,并定量表征详细的不同 耐药结核分枝杆菌亚群我们将使用活细胞显微镜,荧光标记物, 图像分析我们将把这些定量分析整合到数学模型中, 细胞生长和分裂的策略。我们的多学科方法将量化细胞之间的关系, 大小和细胞周期进展与药物敏感性在不同的元素应力条件下的主机 环境为了将结核分枝杆菌的生长特征和变异与人类的治疗结果联系起来,我们的实验 将集中于从治愈或复发的患者中分离出的临床菌株。我们预计这些模型将形成 创建针对新出现的耐药亚群的优化治疗方案的基础 使用现有抗生素的不同组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bree Beardsley Aldridge其他文献

Bree Beardsley Aldridge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bree Beardsley Aldridge', 18)}}的其他基金

Deep spatial immune profiling of granulomas and M. tuberculosis adaptation to disease and treatment
肉芽肿和结核分枝杆菌对疾病和治疗的适应的深度空间免疫分析
  • 批准号:
    10536685
  • 财政年份:
    2021
  • 资助金额:
    $ 70.01万
  • 项目类别:
Deep spatial immune profiling of granulomas and M. tuberculosis adaptation to disease and treatment
肉芽肿和结核分枝杆菌对疾病和治疗的适应的深度空间免疫分析
  • 批准号:
    10358111
  • 财政年份:
    2021
  • 资助金额:
    $ 70.01万
  • 项目类别:
Single-cell factors of tuberculosis drug tolerance during adaptation to environmental stressors
适应环境应激过程中结核病耐药性的单细胞因素
  • 批准号:
    10376226
  • 财政年份:
    2020
  • 资助金额:
    $ 70.01万
  • 项目类别:
Lesion-centric optimization of multidrug therapies for tuberculosis
以病变为中心的结核病多药治疗优化
  • 批准号:
    10543134
  • 财政年份:
    2020
  • 资助金额:
    $ 70.01万
  • 项目类别:
Single-cell factors of tuberculosis drug tolerance during adaptation to environmental stressors
适应环境应激过程中结核病耐药性的单细胞因素
  • 批准号:
    10590745
  • 财政年份:
    2020
  • 资助金额:
    $ 70.01万
  • 项目类别:
Lesion-centric optimization of multidrug therapies for tuberculosis
以病变为中心的结核病多药治疗优化
  • 批准号:
    10319547
  • 财政年份:
    2020
  • 资助金额:
    $ 70.01万
  • 项目类别:
Quantitative Design of Multi-drug Regiments for Tuberculosis
结核病多药方案的定量设计
  • 批准号:
    8570145
  • 财政年份:
    2013
  • 资助金额:
    $ 70.01万
  • 项目类别:

相似海外基金

Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
  • 批准号:
    2902098
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
  • 批准号:
    BB/Y004035/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
  • 批准号:
    FT230100468
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
  • 批准号:
    MR/Y033809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
  • 批准号:
    494853
  • 财政年份:
    2023
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
  • 批准号:
    2884862
  • 财政年份:
    2023
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
  • 批准号:
    2904356
  • 财政年份:
    2023
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了