A large-capacity bacterial platform for the production and targeted delivery of gene editing systems
用于基因编辑系统生产和靶向递送的大容量细菌平台
基本信息
- 批准号:10384793
- 负责人:
- 金额:$ 28.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2023-09-21
- 项目状态:已结题
- 来源:
- 关键词:BCAR1 geneBacteriaBiodistributionBiotechnologyCRISPR/Cas technologyCell membraneCellsChargeClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexDevelopmentDoseDuchenne muscular dystrophyEndosomesEngineeringEpithelialEventEyeFutureGene DeliveryGenesGeneticGenetic DiseasesGenomeGenomic InstabilityGenomicsGrantImmuneImmune responseImmunityIn VitroInfluenza TherapeuticInjectionsIntramuscularLeadLegal patentLiposomesLungMammalian CellMechanicsMediatingMethodsMucous MembraneMusNasal turbinate bone structureNational Institute of Allergy and Infectious DiseaseNoseNucleic AcidsPeptidesPhasePhysiologicalProductionProteinsRNARNA Interference TherapyRNA deliveryRegulatory ElementRiskRouteSafetySkeletal MuscleSmall Business Innovation Research GrantSpecificitySystemTechnologyTherapeuticTherapeutic UsesTissuesToxic effectUntranslated RNAVaginaValidationViral VectorVirusbasecarcinogenesisclinical applicationclinically relevantexosomehuman diseaseimmune activationimmunogenicityimprovedin vitro Modelin vivoinnovationlarge scale productionmicrovesiclesmouse modelmuscular dystrophy mouse modelnanoparticlenovelnucleasephase 2 studysmall hairpin RNAtargeted deliverytherapeutic genetooltranscription activator-like effector nucleasesvector
项目摘要
SUMMARY
There is an unmet need for delivery systems that empower broad therapeutic use of gene editing technologies.
The power of the CRISPR/Cas system has been harnessed for a variety of gene editing approaches, and it has
been hailed as the future of therapeutic gene editing. A key impediment to the therapeutic implementation of
CRISPR/Cas-mediated gene editing strategies is the efficient delivery of the required components, i.e., two non-
coding RNAs and the large Cas9 nuclease, to target cells and tissues. Current delivery platforms, e.g., viruses
and non-viral platforms, suffer from several weaknesses, including (1) lack of targeting specificity, 2) inability to
enter cells, 3) immune activation, 4) off-target effects and limited therapeutic window, and 5) limited genetic
encoding and cargo capacity. SiVEC Biotechnologies, with support from phase I and phase II SBIR grants from
NIAID (1R43AI140243-01A1 and 2R44AI140243-02), has previously developed a bacteria-based delivery
platform to efficiently generate and deliver short-hairpin RNAs (shRNAs) to specifically targeted tissues. This
platform is not limited to shRNA delivery, and in this proposal, we will engineer it to create “SiCRISP” – a novel
platform that produces and delivers all components needed for CRISPR/Cas9-directed gene editing. We will also
perform proof-of-concept studies for its use in the delivery of gene editing machinery to clinically relevant tissues.
By applying the key components of the SiVEC delivery platform, SiCRISP overcomes several critical
shortcomings that limit the therapeutic potential of existing gene editing delivery systems: (1) it can target specific
cells and tissues, and can be administered via multiple routes, e.g., intranasal, systemic, targeted injection,
intraocular, intravaginal, among others; (2) it can enter cells and escape the endosome to efficiently deliver its
cargo; (3) it has been experimentally confirmed as non-immunogenic, and it is not recognized by host immune
cells, even after repeated delivery; (4) its mechanism does not depend on host genome integration, thus its effect
is transient, reducing off-target effects, limiting toxicity, and improving safety; (5) it has no limitation on coding
and delivery capacity (i.e., it simultaneously expresses and delivers all CRISPR/Cas9 components in one dose);
(6) it is inexpensive to produce quickly and in large quantities; (7) as an all-in-one system, it eliminates additional
manufacturing steps; (8) it can produce and deliver the components of any gene editing system (e.g., TALENs,
base editors, and meganucleases) due to its coding versatility and large coding capacity. These innovative
features of the SiCRISP delivery platform will help to realize the full potential of gene editing for the treatment of
human disease.
总结
存在对赋予基因编辑技术的广泛治疗用途的递送系统的未满足的需求。
CRISPR/Cas系统的强大功能已被用于各种基因编辑方法,
被誉为治疗性基因编辑的未来。治疗实施的一个关键障碍是
CRISPR/Cas介导的基因编辑策略是所需组分的有效递送,即,两非
将编码RNA和大的Cas9核酸酶结合到靶细胞和组织中。当前的交付平台,例如,病毒
和非病毒平台,具有几个弱点,包括(1)缺乏靶向特异性,2)不能
进入细胞,3)免疫激活,4)脱靶效应和有限的治疗窗口,以及5)有限的遗传
编码和货物容量。SiVEC生物技术公司,在第一阶段和第二阶段SBIR赠款的支持下,
NIAID(1 R43 AI 140243 - 01 A1和2 R44 AI 140243 -02)先前已开发出基于细菌的递送
该平台可以有效地产生短发夹RNA(shRNAs)并将其递送到特异性靶向组织。这
平台不限于shRNA的交付,在这个建议中,我们将工程师它创建“SiCRISP”-一个新的
该平台生产并提供CRISPR/Cas9指导的基因编辑所需的所有组件。我们还将
进行概念验证研究,用于将基因编辑机器递送到临床相关组织。
通过应用SiVEC交付平台的关键组件,SiCRISP克服了几个关键的
限制现有基因编辑递送系统的治疗潜力的缺点:(1)它可以靶向特定的
细胞和组织,并且可以通过多种途径施用,例如,鼻内、全身、靶向注射,
眼内、阴道内等;(2)它可以进入细胞并逃离内体以有效地递送其分子。
货物;(3)它已被实验证实为非免疫原性,它不被宿主免疫识别,
细胞,即使在重复递送后;(4)其机制不依赖于宿主基因组整合,因此其作用
是短暂的,减少脱靶效应,限制毒性,提高安全性;(5)对编码没有限制
和输送能力(即,它在一个剂量中同时表达和递送所有CRISPR/Cas9组分);
(6)它是廉价的快速和大量生产;(7)作为一个一体化的系统,它消除了额外的
制造步骤;(8)它可以生产和递送任何基因编辑系统的组分(例如,TALEN,
碱基编辑器和大范围核酸酶),这是由于其编码多功能性和大编码容量。这些创新
SiCRISP递送平台的功能将有助于实现基因编辑治疗癌症的全部潜力。
人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lyndsey Linke其他文献
Lyndsey Linke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lyndsey Linke', 18)}}的其他基金
Preclinical development of a biological antiviral for universal influenza treatment and prophylaxis using a novel nucleic acid delivery platform
使用新型核酸递送平台开发用于通用流感治疗和预防的生物抗病毒药物的临床前开发
- 批准号:
10456296 - 财政年份:2018
- 资助金额:
$ 28.61万 - 项目类别:
Preclinical development of a biological antiviral for universal influenza treatment and prophylaxis using a novel nucleic acid delivery platform
使用新型核酸递送平台开发用于通用流感治疗和预防的生物抗病毒药物的临床前开发
- 批准号:
10162491 - 财政年份:2018
- 资助金额:
$ 28.61万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 28.61万 - 项目类别:
Continuing Grant














{{item.name}}会员




