Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
基本信息
- 批准号:10390730
- 负责人:
- 金额:$ 18.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-24 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAutomobile DrivingBenchmarkingBioinformaticsBiophysicsBloodBone MarrowCellsClinicalCommunitiesCommunity MedicineComplementCuesCultured CellsDevelopmentDiffusionEcosystemEncapsulatedEvolutionExtracellular MatrixFamilyGelatinGoalsHematologic NeoplasmsHematopoiesisHematopoieticHematopoietic SystemHematopoietic stem cellsHomeostasisHyaluronic AcidHydrogelsHypoxiaImmuneIn VitroInfrastructureKineticsLengthMarrowMesenchymalMesenchymal Stem CellsMetabolicMicrofluidicsMusNational Institute of Diabetes and Digestive and Kidney DiseasesNaturePatternPopulationProcessRecoveryRegenerative MedicineResearchRouteSeriesSignal TransductionStructureTechnologyTherapeuticTissue Engineeringanaloganalytical toolbasebioinformatics toolbiological systemscancer therapycell behaviorcohesioncohortengineered stem cellsextracellularhematopoietic stem cell expansionhematopoietic stem cell fatehematopoietic stem cell nichehematopoietic stem cell quiescencehigh rewardhigh riskin vivoinnovationinnovative technologiesintercellular communicationmimeticsnanolitrenovelparticlepressureprogramsresponseself-renewalsingle cell sequencingstem cell expansionstem cell nichestem cellsstemnesstechnology developmenttooltool development
项目摘要
Replicating the cascade of signals necessary to control stem cell behavior remains a central challenge for the regenerative medicine community. The hematopoietic system offers an ideal biological system to motivate the development of innovative technologies needed to accomplish this goal. Hematopoiesis is the process where the body’s blood and immune cells are generated from a small number of hematopoietic stem cells (HSCs).
HSC quiescence, self-renewal, and differentiation take place in, and are regulated by, unique regions of the bone marrow termed niches. Many innovations in stem cell engineering first focused on replicating constellations of extracellular matrix, biomolecular, or metabolic (e.g., hypoxia) signals within the niche. For example, we developed microfluidic approaches to create gelatin hydrogels containing marrow-inspired gradients of stiffness, niche cells, and biomolecules for extended culture of 103-104 primary murine HSCs. However, signaling between cohorts of different cell populations within the niche is also a critical regulator of stem cell expansion, quiescence, and lineage specification and may contribute to hematopoietic cancers. We adapted our platform to show the kinetics of HSC-niche cell crosstalk can be manipulated via hydrogel network parameters to dramatically alter HSC fate. We also developed bioinformatics tools to identify secretome signals generated by marrow mesenchymal stem cells (MSCs) that enhance retention of quiescent HSCs.
However, tools to study reciprocal signaling between multiple cell populations within an engineered stem cell niche remains limited by our ability to locally control the assembly, culture, and recovery of multicellular cohorts. Conventional bulk hydrogels do not allow an avenue to tailor, or trace the evolution of, the local microenvironment surrounding unique cell subpopulations. Our research community requires a new tissue engineering ecosystem that allows us to replicate dynamic, multicellular stem cell niches and also exploit recent advances in single-cell sequencing and bioinformatics.
The primary objective of this NIDDK Catalytic Tool and Technology Development project (R21 DK131751-01) is to develop underlying technology required to form a granular stem cell niche. Granular hydrogels are macroscale structures generated as jammed assemblies of microscale hydrogel particles. To date they have been predominantly used as acellular hydrogel particles with cells cultured in the voids between particles. Our innovative approach will encapsulate single marrow derived hematopoietic cells in distinct nanoliter-volume hydrogel microdroplets that can be rapidly formed, tailored for each discrete cell population, and non-toxically degraded. We will use the short diffusion lengths of microdroplets to study of the convergence of matrix biophysical and metabolic signals on HSC fate. We address the high-risk, high-reward nature of this catalytic tool development project via the following aims:
Aim 1. Establish a microdroplet artificial marrow unit cell. We will generate essential features of a multi- cellular granular hydrogel niche. We will formalize microdroplet fabrication parameters to encapsulate murine HSCs in nanoliter-volume hydrogels as distinct marrow unit cells. We will benchmark patterns of in vitro HSC expansion in microdroplet niches in response to metabolic constraint (hypoxia). We will diversify the microdroplet matrix via inclusion of marrow-mimetic hyaluronic acid, then use multi-parameter tools to quantify HA-induced shifts in HSC quiescence.
Aim 2. Create granular assemblies of microdroplet hydrogels. Ordered assembly, culture, then disassembly of hydrogel microdroplets provides the technical basis for a multicellular niche required to interrogate multicellular signaling. We will form jammed assemblies of multiple families of acellular microdroplet hydrogels, evaluate their stability in culture, and demonstrate selective recovery of unique microdroplet hydrogel populations post culture. This revised aim has one subpart:
Aim 2A. Manipulate the cohesion between particles to form and disassemble granular niches.
Impact. This proposed research is unified in its approach to develop innovative tools to mimic multicellular stem cell niches. HSCs in the bone marrow navigate diverse and dynamic matrix, metabolic, and cellular selection pressures. We will develop critical tissue engineering infrastructure to study the integrated contribution of matrisome remodeling and multicellular signaling on HSC expansion and quiescence. The well- characterized murine hematopoietic system provides a rigorous framework to evaluate and mimic ex vivo regulatory processes within niches whose rarity and complexity limit direct in vivo examination. Consistent with score-driving criteria of the Catalytic Tool and Technology program, we will develop a novel, high-risk approach to generate multicellular stem cell niche analogs based on granular hydrogels. We will control the assembly and disassembly of multicellular niches then employ analytical tools to study dynamic processes of matrix remodeling and HSC-niche cell crosstalk. Such studies are intractable in conventional bulk hydrogel cultures.
Efficient strategies to create ordered, hierarchical, and multicellular assemblies will be transformative to the NIDDK scientific and clinical community for studies of hematopoietic homeostasis, hematopoietic cancers, and for the development of new cancer therapies.
复制控制干细胞行为所必需的信号级联仍然是再生医学界的核心挑战。造血系统提供了一个理想的生物系统,以激励实现这一目标所需的创新技术的发展。造血是由少量造血干细胞(hsc)产生人体血液和免疫细胞的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10495364 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 18.86万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 18.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 18.86万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 18.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 18.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)