Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
基本信息
- 批准号:10818769
- 负责人:
- 金额:$ 4.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdministrative SupplementAlkylating AgentsBiomedical ResearchBlood VesselsBrainCell ProliferationCellsClinicalDataDiffuseDrug resistanceEncapsulatedEngineeringEvaluationEvolutionExcisionFoundationsGlioblastomaHydrogelsInvadedMGMT geneMalignant NeoplasmsMalignant neoplasm of brainMeasuresMediatingModelingOperative Surgical ProceduresOutcomeParentsPatientsPharmaceutical PreparationsPlayPopulationProcessRecurrenceResistanceRoleStructureSystemTissue EngineeringTissue ModelTreatment EfficacyUnderrepresented PopulationsVariantanti-cancergraduate studenthigh throughput screeningmimeticsminiaturizenanolitrenovelparticleresponsestandard of carestemstem cellstemozolomidetreatment responsetumortumor microenvironmenttwo-dimensional
项目摘要
ABSTRACT
This application is being submitted in response to PA-21-071. Glioblastoma (GBM) is the most common and
lethal form of brain cancer. Standard of care is surgical resection followed by treatment with the alkylating
agent temozolomide (TMZ). Resection removes the tumor bulk, and TMZ provides some benefit to many
patients. The parent Cancer Tissue Engineering Collaborative project (R01 CA256481) is developing tissue
engineering approach to accelerate the evaluation of new anticancer compounds that overcome TMZ
resistance. This project is developing processes to create engineered models of the perivascular niches
(PVNs) that extend from the tumor into the surrounding parenchyma and which are believed to play a dominant
role in invasion, recurrence, TMZ resistance, and poor survival. Conventional bulk hydrogels, even
miniaturized variants, do not provide an avenue to tailor, or trace the evolution of, the local microenvironment
surrounding unique cell subpopulations. The objective of this NCI Diversity Administrative supplement is to
support a novel initiative to create granular hydrogel assemblies that can mimic the multicellular tumor
microenvironment yet are amenable to high-throughput screening approaches conventionally used to examine
drug responses using two-dimensional culture. We have generated the technical foundation to create granular
hydrogel to study GBM therapeutic response. Granular hydrogels are macroscale structures generated as
jammed assemblies of microscale hydrogel particles. To date they have been predominantly used as acellular
hydrogel particles with cells cultured in the voids between particles. As part of a recent administrative
supplement, we developed capacity to encapsulate GBM cells in distinct nanoliter-volume hydrogel
microdroplets that can be rapidly formed, have their matrix composition tailored for discrete cell populations,
and be non-toxically degraded. Now, we seek to expand efforts with granular hydrogel systems to examine
high-throughput response data for glioblastoma cells. To do this, this project will first measure therapeutic
responses of GBM cells to brain-mimetic HA and the perivascular secretome in granular hydrogels (Aim S1).
We will subsequently examine the role of multicellular aggregations on GBM cell invasion and therapeutic
efficacy using both macroscale and granular hydrogel models (Aim S2). This proposed supplement will support
a graduate student from a historically underrepresented group in biomedical research to develop hierarchical
models of the glioblastoma tumor microenvironment. This granular hydrogel approach provides the basis to
interrogate the role of glioblastoma aggregation size and relative spacing on glioblastoma stem cell activity,
GBM invasion, and resistance to frontline therapies. We will show granular hydrogels can be integrated into
high-throughput screening approaches to accelerate the evaluation of novel TMZ derivatives created to target
diffuse GBM cells regardless of MGMT status.
抽象的
该申请是根据PA-21-071提交的。胶质母细胞瘤(GBM)是最常见的,并且
脑癌的致命形式。护理标准是手术切除,然后用烷基化治疗
替莫唑胺(TMZ)。切除去除肿瘤的大容量,TMZ为许多人提供了一些好处
患者。父癌组织工程协作项目(R01 CA256481)正在发展组织
工程方法可以加速对克服TMZ的新抗癌化合物的评估
反抗。该项目正在开发过程以创建血管周围壁ches的工程模型
(PVN)从肿瘤延伸到周围的实质,据信它们占主导地位
在入侵,复发,TMZ抗性和存活不良中的作用。传统的散装水凝胶,甚至
微型变体,不提供量身定制或追踪当地微环境的途径
周围独特的细胞亚群。 NCI多样性管理补充的目的是
支持一项新型计划,以创建可以模仿多细胞肿瘤的颗粒状水凝胶组件
微环境却适合于通常用于检查的高通量筛选方法
使用二维培养的药物反应。我们已经建立了创建颗粒状的技术基础
水凝胶研究GBM治疗反应。颗粒水凝胶是产生的宏观结构
微观水凝胶颗粒的堵塞组件。迄今为止,它们主要被用作细胞
水凝胶颗粒具有在颗粒之间的空隙中培养的细胞。作为最近行政的一部分
补充,我们开发了将GBM细胞封装在不同纳米素体积水凝胶中的能力
可以迅速形成的微颗粒,其基质组成为离散的细胞群体量身定制,
并在无毒的降解上。现在,我们寻求扩大使用颗粒水凝胶系统的努力来检查
胶质母细胞瘤细胞的高通量响应数据。为此,该项目将首先衡量治疗
GBM细胞对颗粒水凝胶中脑模拟HA和血管周期分泌组的反应(AIM S1)。
随后,我们将研究多细胞聚集在GBM细胞侵袭和治疗中的作用
使用宏观和颗粒水凝胶模型(AIM S2)的功效。拟议的补充将支持
来自历史上代表性不足的生物医学研究的研究生,以发展等级制度
胶质母细胞瘤肿瘤微环境的模型。这种颗粒状水凝胶方法为
询问胶质母细胞瘤聚集大小和相对间距在胶质母细胞瘤干细胞活性上的作用,
GBM入侵和对前线疗法的抵抗力。我们将显示颗粒水凝胶可以集成到
高通量筛选方法,以加快针对目标创建的新型TMZ衍生物的评估
弥漫性GBM细胞不管MGMT状态如何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10495364 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
相似海外基金
The 3E Study: Economic and Educational Contributions to Emerging Adult Cardiometabolic Health
3E 研究:经济和教育对新兴成人心脏代谢健康的贡献
- 批准号:
10770261 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Identifying how alcohol-evoked changes in neural firing affect systems level computations during decision-making
确定酒精引起的神经放电变化如何影响决策过程中的系统级计算
- 批准号:
10766877 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Molecular Biology and Genetics of Human Tumor Viruses
人类肿瘤病毒的分子生物学和遗传学
- 批准号:
10898452 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
- 批准号:
10790269 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Facility Management, Maintenance and Operation Core
设施管理、维护和运营核心
- 批准号:
10793908 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别: