Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
基本信息
- 批准号:10185367
- 负责人:
- 金额:$ 47.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-03 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnisotropyArchitectureAutologousBiocompatible MaterialsBiological ProcessBiophysicsBlood VesselsBone InjuryBone MarrowBone RegenerationCalvariaClinicalCollagenComplexComplicationCongenital AbnormalityDataDefectDepositionDoseEndothelial CellsFailureFamilyGlycoproteinsGoldHistologicImplantIn VitroMalignant NeoplasmsMechanicsMesenchymal Stem CellsMethodsMineralsModelingNatural regenerationNatureOperative Surgical ProceduresOryctolagus cuniculusOsteoclastsOsteogenesisPerformancePhenotypePolymersPopulationProcessProductionPropertyReceptor SignalingRecruitment ActivityResearchSignal TransductionStructureTechnologyTimeTissue EngineeringTraumaTumor necrosis factor receptor 11bVascular remodelingWorkbonebone morphogenetic protein receptorscostcraniofacialcraniofacial bonecraniumdefined contributiondesignhealingimprovedin vivoin vivo regenerationinhibitor/antagonistinnovationmechanical propertiesmechanotransductionmillimetermorphogensosteogenicosteoprogenitor cellpre-clinicalprototypereconstructionrecruitregeneration potentialregenerativeregenerative therapyrepairedsample fixationscaffoldstemstem cell expansionstem cellsstroke therapy
项目摘要
ABSTRACT
Defects in craniofacial bones of the skull occur congenitally, after high-energy impacts, and during the course of
treatment for stroke and cancer. Autologous bone or alloplastic implants are the current gold-standards for
surgical reconstruction. However, limited quantities and time-intensive intraoperative fitting of autologous bone,
the non-regenerative nature of alloplastic implants, and surgical challenges that stem from irregular defect
margins and the quality of the surrounding bone all contribute to poor healing and high complication rates. A
biomaterial that could be shaped precisely and quickly like an alloplastic implant but that works in a regenerative
fashion like autologous bone would be transformative for craniofacial reconstruction. The objective of this
proposal is to potentiate regeneration of the structure, composition, and mechanical properties of craniofacial
bone using an innovative scaffold-mesh composite biomaterial. We have generated extensive proof-of-principle
data for a surgically-practical composite biomaterial for craniofacial bone regeneration. Our core technology is a
porous mineralized collagen scaffold to expand MSCs in vivo. We have identified microstructural features of this
material to activate mechanotransduction and BMP receptor signaling to accelerate MSC osteogenicity and
secretion of osteoprotegerin (OPG), a soluble glycoprotein and endogenous inhibitor of osteoclast activity. As a
result, this material increases osteogenicity and transiently inhibits osteoclast activity to accelerate regenerative
healing of craniofacial bone defects osteogenic supplements or exogenously-seeded stem cells. We have
independently developed a millimeter-scale polymeric mesh that can be integrated into the scaffold, à la rebar
in concrete, to form a modular composite that can be shaped intraoperatively to conformally fit irregular defects.
Excitingly, prototype scaffold-mesh composites generated using a mesh printed from an advanced Hyperelastic
Bone® material increases MSC OPG secretion. These findings suggest the exciting possibility to co-optimize
scaffold microstructural properties as well as the composition and architecture of the integrated polymer mesh
to both passively aid surgical-practicality and actively accelerate regenerative healing. Our central hypothesis is
that a multi-scale scaffold-mesh composite will accelerate MSC recruitment and retention, increase osteogenesis
while inhibiting osteoclast activity, and facilitate vascular remodeling to improve regeneration. To do this we will
first define the contribution of scaffold anisotropy on the recruitment and activity of osteoprogenitors and
endothelial cells (Aim 1). We will establish topology parameters of a scalable mesh to aid surgical practicality
and regenerative potential (Aim 2). Lastly, we will demonstrate in vivo efficacy of a scaffold-mesh composite in
a confined calvarial defect model (Aim 3). Our unified effort to develop craniofacial regenerative technologies
will generate significant preclinical data to support an FDA IDE application essential for accelerating this
technology towards clinical use as a material-only regenerative therapy for craniofacial bone injuries.
摘要
颅骨的颅面骨缺陷是先天性的,在高能量撞击后,以及在撞击过程中,
治疗中风和癌症自体骨或异体骨植入物是目前的黄金标准,
手术重建然而,自体骨的数量有限且术中拟合耗时,
异体移植物的非再生性,以及不规则缺损引起的外科挑战
边缘和周围骨的质量都导致愈合不良和高并发症发生率。一
这种生物材料可以像异体植入物一样精确而快速地成形,但在再生过程中起作用。
像自体骨这样的时尚将是颅面重建的变革。的目的
建议是加强颅面结构,成分和机械性能的再生,
骨使用创新的支架网状复合生物材料。我们已经产生了广泛的原理证明
用于颅面骨再生的外科实用复合生物材料的数据。我们的核心技术
多孔矿化胶原支架体内扩增MSCs。我们已经确定了这种微结构特征,
激活机械传导和BMP受体信号传导以加速MSC成骨性的材料,
骨保护素(OPG)的分泌,一种可溶性糖蛋白和破骨细胞活性的内源性抑制剂。作为
结果,这种材料增加成骨性并短暂抑制破骨细胞活性,以加速再生
颅面骨缺损的愈合,成骨补充剂或外源性接种的干细胞。我们有
独立开发了一种毫米级的聚合物网,可以集成到支架中,
具体地说,形成一个模块化的复合材料,可以在手术中成形,以适应不规则的缺陷。
令人兴奋的是,使用先进的超弹性打印机打印的网格生成的原型支架-网格复合材料
Bone®材料增加MSC OPG分泌。这些发现表明了共同优化
支架微观结构特性以及集成聚合物网片的组成和结构
以既被动地帮助医疗实用性又主动地加速再生愈合。我们的核心假设是
多尺度支架-网状复合物将加速MSC的募集和保留,增加骨生成,
同时抑制破骨细胞活性,促进血管重塑,改善再生。为此,我们将
首先确定支架各向异性对骨祖细胞的募集和活性的贡献,
内皮细胞(Aim 1)。我们将建立一个可扩展的网格拓扑参数,以帮助手术的实用性
和再生潜力(目标2)。最后,我们将证明支架-网状复合物在体内的疗效,
局限性颅骨缺损模型(目标3)。我们共同努力开发颅面再生技术
将产生重要的临床前数据,以支持FDA IDE申请,这对加速这一进程至关重要。
技术走向临床应用,作为颅面骨损伤的纯材料再生治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10495364 - 财政年份:2021
- 资助金额:
$ 47.99万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 47.99万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 47.99万 - 项目类别:
Studentship