Assembling granular stem cell niches using microdroplet hydrogels

使用微滴水凝胶组装颗粒干细胞生态位

基本信息

项目摘要

Replicating the cascade of signals necessary to control stem cell behavior remains a central challenge for the regenerative medicine community. The hematopoietic system offers an ideal biological system to motivate the development of innovative technologies needed to accomplish this goal. Hematopoiesis is the process where the body’s blood and immune cells are generated from a small number of hematopoietic stem cells (HSCs). HSC quiescence, self-renewal, and differentiation take place in, and are regulated by, unique regions of the bone marrow termed niches. Many innovations in stem cell engineering first focused on replicating constellations of extracellular matrix, biomolecular, or metabolic (e.g., hypoxia) signals within the niche. For example, we developed microfluidic approaches to create gelatin hydrogels containing marrow-inspired gradients of stiffness, niche cells, and biomolecules for extended culture of 103-104 primary murine HSCs. However, signaling between cohorts of different cell populations within the niche is also a critical regulator of stem cell expansion, quiescence, and lineage specification and may contribute to hematopoietic cancers. We adapted our platform to show the kinetics of HSC-niche cell crosstalk can be manipulated via hydrogel network parameters to dramatically alter HSC fate. We also developed bioinformatics tools to identify secretome signals generated by marrow mesenchymal stem cells (MSCs) that enhance retention of quiescent HSCs. However, tools to study reciprocal signaling between multiple cell populations within an engineered stem cell niche remains limited by our ability to locally control the assembly, culture, and recovery of multicellular cohorts. Conventional bulk hydrogels do not allow an avenue to tailor, or trace the evolution of, the local microenvironment surrounding unique cell subpopulations. Our research community requires a new tissue engineering ecosystem that allows us to replicate dynamic, multicellular stem cell niches and also exploit recent advances in single-cell sequencing and bioinformatics. The primary objective of this NIDDK Catalytic Tool and Technology Development project (R21 DK131751-01) is to develop underlying technology required to form a granular stem cell niche. Granular hydrogels are macroscale structures generated as jammed assemblies of microscale hydrogel particles. To date they have been predominantly used as acellular hydrogel particles with cells cultured in the voids between particles. Our innovative approach will encapsulate single marrow derived hematopoietic cells in distinct nanoliter-volume hydrogel microdroplets that can be rapidly formed, tailored for each discrete cell population, and non-toxically degraded. We will use the short diffusion lengths of microdroplets to study of the convergence of matrix biophysical and metabolic signals on HSC fate. We address the high-risk, high-reward nature of this catalytic tool development project via the following aims: Aim 1. Establish a microdroplet artificial marrow unit cell. We will generate essential features of a multi- cellular granular hydrogel niche. We will formalize microdroplet fabrication parameters to encapsulate murine HSCs in nanoliter-volume hydrogels as distinct marrow unit cells. We will benchmark patterns of in vitro HSC expansion in microdroplet niches in response to metabolic constraint (hypoxia). We will diversify the microdroplet matrix via inclusion of marrow-mimetic hyaluronic acid, then use multi-parameter tools to quantify HA-induced shifts in HSC quiescence. Aim 2. Create granular assemblies of microdroplet hydrogels. Ordered assembly, culture, then disassembly of hydrogel microdroplets provides the technical basis for a multicellular niche required to interrogate multicellular signaling. We will form jammed assemblies of multiple families of acellular microdroplet hydrogels, evaluate their stability in culture, and demonstrate selective recovery of unique microdroplet hydrogel populations post culture. This revised aim has one subpart: Aim 2A. Manipulate the cohesion between particles to form and disassemble granular niches. Impact. This proposed research is unified in its approach to develop innovative tools to mimic multicellular stem cell niches. HSCs in the bone marrow navigate diverse and dynamic matrix, metabolic, and cellular selection pressures. We will develop critical tissue engineering infrastructure to study the integrated contribution of matrisome remodeling and multicellular signaling on HSC expansion and quiescence. The well- characterized murine hematopoietic system provides a rigorous framework to evaluate and mimic ex vivo regulatory processes within niches whose rarity and complexity limit direct in vivo examination. Consistent with score-driving criteria of the Catalytic Tool and Technology program, we will develop a novel, high-risk approach to generate multicellular stem cell niche analogs based on granular hydrogels. We will control the assembly and disassembly of multicellular niches then employ analytical tools to study dynamic processes of matrix remodeling and HSC-niche cell crosstalk. Such studies are intractable in conventional bulk hydrogel cultures. Efficient strategies to create ordered, hierarchical, and multicellular assemblies will be transformative to the NIDDK scientific and clinical community for studies of hematopoietic homeostasis, hematopoietic cancers, and for the development of new cancer therapies.
复制控制干细胞行为所需的级联信号仍然是再生医学界的一个核心挑战。造血系统提供了一个理想的生物系统,以促进实现这一目标所需的创新技术的发展。造血是身体的血液和免疫细胞从少量造血干细胞(HSC)产生的过程。 HSC的静止、自我更新和分化发生在称为小生境的骨髓的独特区域中,并受其调节。干细胞工程中的许多创新首先集中在复制细胞外基质、生物分子或代谢(例如,缺氧)的信号。例如,我们开发了微流体方法来创建明胶水凝胶,其包含骨髓激发的刚度梯度、小生境细胞和生物分子,用于103-104个原代鼠HSC的扩展培养。然而,小生境内不同细胞群的群组之间的信号传导也是干细胞扩增、静止和谱系特化的关键调节因子,并且可能促成造血系统癌症。我们调整了我们的平台,以显示HSC-小生境细胞串扰的动力学可以通过水凝胶网络参数来操纵,以显著改变HSC的命运。我们还开发了生物信息学工具来识别由骨髓间充质干细胞(MSC)产生的分泌组信号,这些信号增强静止HSC的保留。 然而,研究工程化干细胞生态位内多个细胞群体之间相互信号传导的工具仍然受到我们局部控制多细胞群体组装、培养和恢复的能力的限制。常规的本体水凝胶不允许定制或追踪独特细胞亚群周围的局部微环境的演变的途径。我们的研究社区需要一个新的组织工程生态系统,使我们能够复制动态的多细胞干细胞生态位,并利用单细胞测序和生物信息学的最新进展。 该NIDDK催化工具和技术开发项目(R21 DK 131751 -01)的主要目标是开发形成颗粒干细胞生态位所需的基础技术。粒状水凝胶是作为微米级水凝胶颗粒的堵塞组装体产生的宏观级结构。迄今为止,它们主要用作无细胞水凝胶颗粒,细胞在颗粒之间的空隙中培养。我们的创新方法将单个骨髓来源的造血细胞封装在不同的纳升体积的水凝胶微滴中,这些微滴可以快速形成,为每个离散的细胞群体量身定制,并且无毒降解。我们将使用微滴的短扩散长度来研究基质生物物理和代谢信号对HSC命运的会聚。我们通过以下目标来解决这个催化工具开发项目的高风险,高回报性质: 目标1.微滴人工骨髓单位细胞的建立。我们将生成多细胞颗粒水凝胶生态位的基本特征。我们将正式确定微滴制造参数,以将小鼠HSC封装在纳升体积的水凝胶中作为不同的骨髓单位细胞。我们将在微滴龛体外HSC扩增的基准模式,以响应代谢限制(缺氧)。我们将通过包含骨髓模拟透明质酸来使微滴基质多样化,然后使用多参数工具来量化HA诱导的HSC静止变化。 目标2.创建微滴水凝胶的颗粒状组件。水凝胶微滴的有序组装、培养、然后拆解为询问多细胞信号所需的多细胞小生境提供了技术基础。我们将形成多个非细胞微滴水凝胶家族的堵塞组件,评估其在培养中的稳定性,并证明培养后独特的微滴水凝胶群体的选择性恢复。修订后的目标有一个子部分: 目标2A。操纵粒子之间的凝聚力来形成和分解颗粒壁龛。 冲击这项拟议的研究是统一的方法,以开发创新的工具来模仿多细胞干细胞龛。骨髓中的造血干细胞在不同的动态基质、代谢和细胞选择压力下导航。我们将开发关键的组织工程基础设施,以研究基质体重塑和多细胞信号传导对HSC扩增和静止的综合贡献。充分表征的鼠造血系统提供了严格的框架来评价和模拟小生境内的离体调节过程,小生境的稀有性和复杂性限制了直接的体内检查。与催化工具和技术计划的分数驱动标准一致,我们将开发一种新的,高风险的方法来生成基于颗粒水凝胶的多细胞干细胞生态位类似物。我们将控制多细胞小生境的组装和拆卸,然后采用分析工具来研究基质重塑和HSC-小生境细胞串扰的动态过程。这样的研究在常规的本体水凝胶培养中是棘手的。 创建有序,分层和多细胞组装的有效策略将对NIDDK科学和临床社区进行变革,用于造血稳态,造血癌症的研究以及新癌症疗法的开发。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan A. Harley其他文献

Brendan A. Harley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan A. Harley', 18)}}的其他基金

Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
  • 批准号:
    10831221
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
  • 批准号:
    10818769
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
  • 批准号:
    10818804
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
  • 批准号:
    10390730
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
  • 批准号:
    10666626
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
  • 批准号:
    10400873
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
  • 批准号:
    10606592
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
  • 批准号:
    10495364
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
  • 批准号:
    10185367
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
  • 批准号:
    10413538
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:

相似海外基金

Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
  • 批准号:
    20K07947
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
  • 批准号:
    17K19824
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
  • 批准号:
    25330237
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
  • 批准号:
    23591741
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了