Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
基本信息
- 批准号:10390198
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-17 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffectAgingArchitectureBiochemicalCancer EtiologyCellsChromatinChromosomesComplexCountryDNA RepairDNA SequenceDNA biosynthesisDataDetectionDevelopmentDiseaseDouble Strand Break RepairDrosophila genusEarly DiagnosisExposure toF-ActinFailureFoundationsGenesGenetic RecombinationGenomeGenome StabilityGenomic InstabilityGoalsHealthHeterochromatinHumanHuman GenomeInvestmentsIonizing radiationKnowledgeLinkLongevityMalignant NeoplasmsMicrofilamentsModelingMolecularMovementMutationMyosin ATPaseNormal CellNuclearNuclear Pore Complex ProteinsOrganismOutcomes ResearchPathway interactionsPhasePreventionProcessPublishingRegulationResolutionRiskRoleScreening for cancerSister ChromatidSiteSourceStructureSumoylation PathwayTestingTherapeutic InterventionTimebasebiophysical propertiescancer cellcancer preventioncancer therapycancer typedriving forcegenome integritygenome-widehomologous recombinationhuman diseaseimaging geneticsimprovedpreventrecombinational repairrepairedresponsetumor progressiontumorigenesisubiquitin-protein ligase
项目摘要
SUMMARY
Advancing our knowledge of pericentromeric heterochromatin repair is a high impact investment for improving
human health: heterochromatin is a poorly characterized region comprising nearly a third of the human
genome; double-strand break (DSB) repair failures in this region affect not just specific genes, but also
genome-wide stability; and the likelihood of failures is high because of the many repeated sequences that
characterize this domain. Despite the foundational importance of characterizing these processes, DSB repair
mechanisms in heterochromatin are largely understudied. We discovered a specialized pathway that promotes
faithful homologous recombination (HR) repair in heterochromatin while preventing aberrant recombination,
effectively isolating heterochromatic repair sites to the nuclear periphery before strand invasion. We have
recently identified several components required for this process, including nuclear actin filaments (F-actin) and
myosins, and chromatin-associated nucleoporins, but the regulation and function of these components remain
poorly understood. Dysregulation of heterochromatin repair is likely one of the most underestimated and
powerful sources of tumorigenesis, and identifying the components involved is essential for understanding
cancer etiology and developing more effective strategies for therapeutic intervention. Our central hypothesis is
that F-actin, myosins, nucleoplasmic nucleoporins, and phase separation are essential regulators of
heterochromatin repair dynamics, and that SUMOylation participates in coordinating their function in repair
progression. We will combine a wealth of super resolution imaging, genetic and biochemical approaches to
investigate the molecular mechanisms involved in these processes. Expected positive outcomes of this
research include the systematic identification of the molecular machinery that protects heterochromatin from
massive genome rearrangements, enabling successful completion of HR repair. These studies are also
expected to illuminate missing links between nuclear architecture and dynamics, phase separation, repair
progression, and the stability of repeated DNA sequences. These results will have an important positive impact
by identifying crucial safeguard mechanisms used by normal cells to protect the genome from environmental
threats. Mutations in these pathways result in genome instability, tumorigenesis, and reduced life span. Thus,
we expect that the proposed studies and future research will trigger exciting advancements in the prevention,
early detection, and treatment of cancer and other human diseases associated with genome instability and
aging-related disorders.
概括
促进我们对周围质聚染色质修复的了解是改善的高影响投资
人类健康:异染色质是一个较差的区域,占人类的近三分之一
基因组;该区域的双链断裂(DSB)维修故障不仅影响特定基因,还会影响
全基因组稳定性;失败的可能性很高,因为许多重复的序列
表征此域。尽管表征这些过程的基本重要性,但DSB维修
异染色质中的机制在很大程度上被研究了。我们发现了一条促进的专业途径
忠实的同源重组(HR)修复异染色质,同时预防异常重组,
在链入侵之前,有效地将异质修复位点分离为核外围。我们有
最近确定了此过程所需的几个组件,包括核肌动蛋白丝(F-肌动蛋白)和
肌球蛋白和染色质相关的核苷,但这些成分的调节和功能仍然存在
理解不佳。异染色质修复失调可能是最被低估的,并且
肿瘤发生的强大来源,并确定所涉及的组件对于理解至关重要
癌症病因和制定更有效的治疗干预策略。我们的中心假设是
那个F-肌动蛋白,肌动物,核质核苷和相分离是必不可少的调节剂
异染色质修复动力学,该sumoylation参与协调其在修复中的功能
进展。我们将结合大量的超级分辨率成像,遗传和生化方法
研究这些过程中涉及的分子机制。预期的积极结果
研究包括对保护异染色质免受的分子机械的系统鉴定
大规模的基因组重排,可以成功完成人力资源修复。这些研究也是
预计会照亮核架构与动态,相位,维修之间缺失的联系
进展以及重复的DNA序列的稳定性。这些结果将产生重要的积极影响
通过识别正常细胞用来保护基因组免受环境的关键保障机制
威胁。这些途径中的突变导致基因组不稳定性,肿瘤发生和寿命降低。因此,
我们预计拟议的研究和未来的研究将引发预防的令人兴奋的进步,
早期发现和治疗与基因组不稳定性相关的癌症和其他人类疾病
与衰老有关的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene E Chiolo其他文献
Irene E Chiolo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene E Chiolo', 18)}}的其他基金
Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
- 批准号:
9010835 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
- 批准号:
9145718 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10478263 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10263286 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8639571 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8446180 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Dissecting the Molecular Link Between Stroke, Actin, and Alzheimer's Disease
剖析中风、肌动蛋白和阿尔茨海默病之间的分子联系
- 批准号:
10772704 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别: