Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
基本信息
- 批准号:10263286
- 负责人:
- 金额:$ 33.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-17 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffectAgingArchitectureBiochemicalCancer EtiologyCellsChromatinChromosomesComplexCountryDNA RepairDNA SequenceDNA biosynthesisDataDetectionDevelopmentDiseaseDouble Strand Break RepairDrosophila genusEarly DiagnosisExposure toF-ActinFailureFoundationsGenesGenetic RecombinationGenomeGenome StabilityGenomic InstabilityGoalsHealthHeterochromatinHumanHuman GenomeInvestmentsIonizing radiationKnowledgeLinkLongevityMalignant NeoplasmsMicrofilamentsModelingMolecularMovementMutationMyosin ATPaseNormal CellNuclearNuclear Pore Complex ProteinsOrganismOutcomes ResearchPathway interactionsPhasePreventionProcessPublishingRegulationResolutionRiskRoleScreening for cancerSister ChromatidSiteSourceStructureSumoylation PathwayTestingTherapeutic InterventionTimebasebiophysical propertiescancer cellcancer preventioncancer therapycancer typedriving forcegenome integritygenome-widehomologous recombinationhuman diseaseimaging geneticsimprovedpreventrecombinational repairrepair functionrepairedresponsetumor progressiontumorigenesisubiquitin-protein ligase
项目摘要
SUMMARY
Advancing our knowledge of pericentromeric heterochromatin repair is a high impact investment for improving
human health: heterochromatin is a poorly characterized region that comprises nearly a third of the human
genome; double-strand break (DSB) repair failures in this region affect not just specific genes, but also
genome-wide stability; and the likelihood of failures is high because of the many repeated sequences that
characterize this domain. Despite the foundational importance of characterizing these processes, DSB repair
mechanisms in heterochromatin are largely understudied. We discovered a specialized pathway that promotes
faithful homologous recombination (HR) repair in heterochromatin while preventing aberrant recombination,
effectively isolating heterochromatic repair sites to the nuclear periphery before strand invasion. We have
recently identified several components required for this process, including nuclear actin filaments (F-actin) an
myosins, and chromatin-associated nucleoporins, but the regulation and function of these components remain
poorly understood. Deregulation of heterochromatin repair is likely one of the most underestimated and
powerful sources of tumorigenesis, and identifying the components involved is essential for understanding
cancer etiology and developing more effective strategies for therapeutic intervention. Our central hypothesis is
that F-actin, myosins, nucleoplasmic nucleoporins, and phase separation are essential regulators of
heterochromatin repair dynamics, and that SUMOylation participates in coordinating their function repair
progression. We will combine a wealth of super resolution imaging, genetic and biochemical approaches to
investigate the molecular mechanisms involved in these process. Expected positive outcomes of this research
include the systematic identification of the molecular machinery that protects heterochromatin from massive
genome rearrangements, enabling successful completion of HR repair. These studies are also expected to
illuminate missing links between nuclear architecture and dynamics, phase separation, repair progression, and
the stability of repeated DNA sequences. These results will have an important positive impact by identifying
crucial safeguard mechanisms used by normal cells to protect the genome from environmental threats.
Mutations in these pathways result in genome instability, tumorigenesis, and reduced life span. Thus, we
expect that the proposed studies and future research will trigger exciting advancements in the prevention, early
detection, and treatment of cancer and other human diseases associated with genome instability and aging-
related disorders.
摘要
提高我们对着丝粒周围异染色质修复的认识是一项对改善
人类健康:异染色质是一个特征不佳的区域,占人类的近三分之一
基因组;该区域的双链断裂(DSB)修复失败不仅影响特定基因,还影响
全基因组的稳定性;失败的可能性很高,因为许多重复的序列
描述这一领域的特征。尽管描述这些过程具有基础性的重要性,DSB修复
异染色质的机制在很大程度上还没有得到充分的研究。我们发现了一条专门的途径,可以促进
异染色质中忠实的同源重组(HR)修复,同时防止异常重组,
在链入侵之前,有效地将异染色质修复位点隔离到核外围。我们有
最近发现了这一过程所需的几种成分,包括核肌动蛋白细丝(F-肌动蛋白)和
肌球蛋白和染色质相关的核孔蛋白,但这些成分的调节和功能仍然
人们对此知之甚少。解除对异染色质修复的管制可能是最被低估的和
肿瘤发生的强大来源,并确定所涉及的成分对于理解
癌症病因学和开发更有效的治疗干预策略。我们的中心假设是
F-肌动蛋白、肌球蛋白、核质核孔蛋白和相分离是
异染色质修复动力学,SUMO化参与协调其功能修复
进步。我们将结合大量的超分辨率成像、遗传和生化方法来
研究这些过程中涉及的分子机制。这项研究的预期积极结果
包括系统地鉴定保护异染色质免受大量
基因组重排,使HR修复得以成功完成。这些研究也有望
阐明核体系结构和动力学、相分离、修复进度和
重复DNA序列的稳定性。这些结果将产生重要的积极影响,
正常细胞用来保护基因组免受环境威胁的关键保障机制。
这些途径的突变会导致基因组不稳定、肿瘤发生和寿命缩短。因此,我们
预计拟议的研究和未来的研究将在早期,在预防方面引发令人兴奋的进展
检测和治疗癌症和其他与基因组不稳定和衰老有关的人类疾病-
相关的障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene E Chiolo其他文献
Irene E Chiolo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene E Chiolo', 18)}}的其他基金
Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
- 批准号:
9010835 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
- 批准号:
9145718 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10478263 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10390198 - 财政年份:2015
- 资助金额:
$ 33.94万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8639571 - 财政年份:2013
- 资助金额:
$ 33.94万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8446180 - 财政年份:2013
- 资助金额:
$ 33.94万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 33.94万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 33.94万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 33.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 33.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 33.94万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 33.94万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 33.94万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 33.94万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 33.94万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 33.94万 - 项目类别:














{{item.name}}会员




