Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
基本信息
- 批准号:9010835
- 负责人:
- 金额:$ 32.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-17 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAffectAgingArchitectureBiochemicalCancer EtiologyCellsChromosomesComplexCountryDNA RepairDNA SequenceDNA biosynthesisDataDevelopmentDiseaseDouble Strand Break RepairDrosophila genusEarly DiagnosisEuchromatinExcisionExposure toFailureFosteringGenesGeneticGenetic RecombinationGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGoalsHealthHereditary DiseaseHeterochromatinHumanHuman GenomeImageInvestmentsIonizing radiationKnowledgeLinkLongevityMalignant NeoplasmsMass Spectrum AnalysisMicrofilamentsModelingMolecularMolecular TargetMotorMovementMutationMyosin ATPaseNormal CellNuclearOrganismOutcomes ResearchPathway interactionsPhasePreventionProcessProteinsPublishingRNA InterferenceRNA Interference PathwayRecruitment ActivityRegulationRiskRoleScreening for cancerSister ChromatidSiteSmall Interfering RNASourceSystemTREX1 geneTestingTherapeutic InterventionTimeWorkage relatedbasecancer therapycancer typedriving forcegenome-widehelicasehigh riskhomologous recombinationhuman diseaseimprovedinsightnovelnovel strategiespreventprotein complexrecombinaserecombinational repairrepairedresponsetumor progressiontumorigenesis
项目摘要
SUMMARY
Advancing our knowledge of pericentromeric heterochromatin repair is a high impact investment for improving
human health: heterochromatin is a poorly characterized region that comprises nearly a third of the human
genome; double-strand break (DSB) repair failures in this region affect not just specific genes but also
genome-wide stability; and failures here are a high risk because of the abundance of repeated sequences that
characterizes this domain. In spite of the foundational importance of characterizing these processes, DSB
repair mechanisms in heterochromatin are mostly unknown. We recently discovered a specialized pathway
that promotes faithful homologous recombination (HR) repair in heterochromatin while preventing massive
genome instability. We discovered a critical role of the Smc5/6 complex in this pathway, but how this complex
participates in heterochromatin repair is unknown. Deregulation of heterochromatin repair is likely one of the
most underestimated and powerful sources of tumorigenesis, and identifying the components involved is
essential for understanding cancer etiology and developing more effective strategies for therapeutic
intervention. To gain insight into the role of Smc5/6 in heterochromatin repair, we used mass spectroscopy to
identify new interactors of this complex, which will be further investigated in this proposal. Our central
hypothesis is that repair occurs in three steps: an initial phase when abnormal progression of HR is
suppressed inside the heterochromatin domain; a second phase when repair sites relocalize to the nuclear
periphery; and a third phase characterized by the removal of the block to HR progression at the nuclear
periphery. We will combine a wealth of imaging, genetic and biochemical approaches in Drosophila cells and
organisms to identify the molecular targets involved in these steps, and determine their role in the spatial and
temporal regulation of heterochromatin repair. Expected positive outcomes of this research include the first
systematic identification of the molecular machinery that protects heterochromatin from massive genome
rearrangements, enabling successful completion of HR repair. These studies are also expected to illuminate
missing links between nuclear architecture and dynamics, repair progression, RNAi silencing pathways, and
the stability of repeated DNA sequences. These results will have an important positive impact by identifying
crucial safeguard mechanisms used by normal cells to protect the genome from environmental threats.
Mutations in these pathways result in genome instability, tumorigenesis, and reduced life span. Thus, we
expect that the proposed studies and future research will trigger exciting advancements in the prevention, early
detection, and treatment of cancer and other human diseases associated with genome instability and aging-
related disorders.
总结
提高我们对着丝粒周围异染色质修复的认识是一项高影响力的投资,
人类健康:异染色质是一个特征性很差的区域,占人类染色体的近三分之一。
基因组;该区域的双链断裂(DSB)修复失败不仅影响特定基因,
全基因组的稳定性;失败的风险很高,因为有大量的重复序列,
这是这个领域的特点。尽管描述这些过程的基本重要性,DSB
异染色质中的修复机制大多是未知的。我们最近发现了一种特殊的途径
促进异染色质中的忠实同源重组(HR)修复,同时防止大规模的
基因组不稳定性我们发现Smc 5/6复合体在这一通路中起着关键作用,但这种复合体如何在细胞内发挥作用呢?
参与异染色质修复是未知的。异染色质修复的失调可能是
最被低估和强大的肿瘤发生的来源,并确定所涉及的成分是
对于了解癌症病因和开发更有效的治疗策略至关重要
干预为了深入了解Smc 5/6在异染色质修复中的作用,我们使用质谱法,
确定这一综合体的新的相互作用者,这将在本提案中进一步研究。我们的中央
假设修复分三步进行:初始阶段,HR异常进展,
在异染色质结构域内受到抑制;第二阶段,修复位点重新定位到细胞核
第三阶段,其特征在于去除了在核上对HR进展的阻滞。
外围我们将在果蝇细胞中结合联合收割机大量的成像、遗传和生物化学方法,
生物体,以确定参与这些步骤的分子靶点,并确定它们在空间和
异染色质修复的时间调节。这项研究的预期积极成果包括:
保护异染色质免受大规模基因组伤害的分子机制的系统鉴定
重新安排,使成功完成人力资源修复。这些研究也有望阐明
核结构和动力学、修复进展、RNAi沉默途径之间缺少联系,
重复DNA序列的稳定性。这些结果将产生重要的积极影响,
正常细胞用来保护基因组免受环境威胁的重要保护机制。
这些途径中的突变导致基因组不稳定、肿瘤发生和寿命缩短。因此我们
预计拟议的研究和未来的研究将引发令人兴奋的进展,在预防,早期
检测和治疗癌症和其他与基因组不稳定性和衰老相关的人类疾病-
相关疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene E Chiolo其他文献
Irene E Chiolo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene E Chiolo', 18)}}的其他基金
Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
- 批准号:
9145718 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10478263 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10390198 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10263286 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8639571 - 财政年份:2013
- 资助金额:
$ 32.59万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8446180 - 财政年份:2013
- 资助金额:
$ 32.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant














{{item.name}}会员




