Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
基本信息
- 批准号:9145718
- 负责人:
- 金额:$ 32.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-17 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAffectAgingArchitectureBiochemicalCancer EtiologyCellsChromosomesComplexCountryDNA RepairDNA SequenceDNA biosynthesisDataDevelopmentDiseaseDouble Strand Break RepairDrosophila genusEarly DiagnosisEuchromatinExcisionExposure toFailureFosteringGenesGenetic RecombinationGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGoalsHealthHereditary DiseaseHeterochromatinHumanHuman GenomeInvestmentsIonizing radiationKnowledgeLinkLongevityMalignant NeoplasmsMass Spectrum AnalysisMicrofilamentsModelingMolecularMolecular TargetMotorMovementMutationMyosin ATPaseNormal CellNuclearOrganismOutcomes ResearchPathway interactionsPhasePreventionProcessProteinsPublishingRNA InterferenceRNA Interference PathwayRecruitment ActivityRegulationRiskRoleScreening for cancerSister ChromatidSiteSmall Interfering RNASourceSystemTREX1 geneTestingTherapeutic InterventionTimeWorkage relatedbasecancer therapycancer typedriving forcegenome-widehelicasehigh riskhomologous recombinationhuman diseaseimaging geneticsimprovedinsightnovelnovel strategiespreventprotein complexrecombinaserecombinational repairrepairedresponsetumor progressiontumorigenesis
项目摘要
SUMMARY
Advancing our knowledge of pericentromeric heterochromatin repair is a high impact investment for improving
human health: heterochromatin is a poorly characterized region that comprises nearly a third of the human
genome; double-strand break (DSB) repair failures in this region affect not just specific genes but also
genome-wide stability; and failures here are a high risk because of the abundance of repeated sequences that
characterizes this domain. In spite of the foundational importance of characterizing these processes, DSB
repair mechanisms in heterochromatin are mostly unknown. We recently discovered a specialized pathway
that promotes faithful homologous recombination (HR) repair in heterochromatin while preventing massive
genome instability. We discovered a critical role of the Smc5/6 complex in this pathway, but how this complex
participates in heterochromatin repair is unknown. Deregulation of heterochromatin repair is likely one of the
most underestimated and powerful sources of tumorigenesis, and identifying the components involved is
essential for understanding cancer etiology and developing more effective strategies for therapeutic
intervention. To gain insight into the role of Smc5/6 in heterochromatin repair, we used mass spectroscopy to
identify new interactors of this complex, which will be further investigated in this proposal. Our central
hypothesis is that repair occurs in three steps: an initial phase when abnormal progression of HR is
suppressed inside the heterochromatin domain; a second phase when repair sites relocalize to the nuclear
periphery; and a third phase characterized by the removal of the block to HR progression at the nuclear
periphery. We will combine a wealth of imaging, genetic and biochemical approaches in Drosophila cells and
organisms to identify the molecular targets involved in these steps, and determine their role in the spatial and
temporal regulation of heterochromatin repair. Expected positive outcomes of this research include the first
systematic identification of the molecular machinery that protects heterochromatin from massive genome
rearrangements, enabling successful completion of HR repair. These studies are also expected to illuminate
missing links between nuclear architecture and dynamics, repair progression, RNAi silencing pathways, and
the stability of repeated DNA sequences. These results will have an important positive impact by identifying
crucial safeguard mechanisms used by normal cells to protect the genome from environmental threats.
Mutations in these pathways result in genome instability, tumorigenesis, and reduced life span. Thus, we
expect that the proposed studies and future research will trigger exciting advancements in the prevention, early
detection, and treatment of cancer and other human diseases associated with genome instability and aging-
related disorders.
概括
增进我们对着丝粒周围异染色质修复的了解是一项具有高影响力的投资,旨在改善
人类健康:异染色质是一个特征很少的区域,占人类的近三分之一
基因组;该区域的双链断裂(DSB)修复失败不仅影响特定基因,还影响
全基因组稳定性;这里的失败风险很高,因为存在大量的重复序列
描述了这个域的特征。尽管表征这些过程具有根本重要性,DSB
异染色质的修复机制大多是未知的。我们最近发现了一条专门的途径
促进异染色质中忠实的同源重组 (HR) 修复,同时防止大量
基因组不稳定。我们发现了 Smc5/6 复合物在此通路中的关键作用,但是该复合物如何
参与异染色质修复尚不清楚。异染色质修复的失调可能是其中之一
最被低估和最强大的肿瘤发生来源,识别所涉及的成分是
对于了解癌症病因和制定更有效的治疗策略至关重要
干涉。为了深入了解 Smc5/6 在异染色质修复中的作用,我们使用质谱法
确定该复合体的新相互作用者,将在本提案中进一步研究。我们的中央
假设修复分三个步骤进行:初始阶段 HR 异常进展
异染色质域内受到抑制;第二阶段,修复地点重新定位到核
周边;第三阶段的特点是消除核HR进展的阻碍
周边。我们将结合果蝇细胞中丰富的成像、遗传和生化方法,
有机体来识别这些步骤中涉及的分子目标,并确定它们在空间和空间中的作用
异染色质修复的时间调节。这项研究的预期积极成果包括:
系统鉴定保护异染色质免受大规模基因组影响的分子机制
重新安排,使人力资源修复顺利完成。这些研究也有望阐明
核结构和动力学、修复进展、RNAi 沉默途径之间缺失的联系,以及
重复DNA序列的稳定性。这些结果将通过识别产生重要的积极影响
正常细胞用来保护基因组免受环境威胁的重要保护机制。
这些途径的突变会导致基因组不稳定、肿瘤发生和寿命缩短。因此,我们
预计拟议的研究和未来的研究将在预防、早期预防方面引发令人兴奋的进展
检测和治疗癌症和其他与基因组不稳定和衰老相关的人类疾病
相关疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene E Chiolo其他文献
Irene E Chiolo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene E Chiolo', 18)}}的其他基金
Role of nuclear architecture in the spatial and temporal dynamics of heterochromatin repair
核结构在异染色质修复时空动态中的作用
- 批准号:
9010835 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10478263 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10390198 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Roles of nuclear architecture and phase separation in heterochromatin repair dynamics
核结构和相分离在异染色质修复动力学中的作用
- 批准号:
10263286 - 财政年份:2015
- 资助金额:
$ 32.59万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8639571 - 财政年份:2013
- 资助金额:
$ 32.59万 - 项目类别:
Dynamics of heterochromatin DNA repair: novel role of nuclear architecture
异染色质 DNA 修复动力学:核结构的新作用
- 批准号:
8446180 - 财政年份:2013
- 资助金额:
$ 32.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant