Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
基本信息
- 批准号:10393918
- 负责人:
- 金额:$ 0.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnimalsBindingCaenorhabditis elegansCardiovascular DiseasesCardiovascular systemCell membraneCell physiologyCellsCholesterolClathrinClathrin AdaptorsComplexDataDiseaseEarEndocytosisEnsureEscape MutantGenetic ScreeningGoalsGrowth FactorHealthHeartHepatitisIn VitroInfluenzaLigandsMalignant NeoplasmsMediatingMedicalMembraneMitochondriaMolecularMolecular ConformationMolecular MachinesMutagenesisNamesNeurodegenerative DisordersNeuromodulatorPathologicPhospholipidsPhosphorylationPhosphotransferasesPhysiologicalProcessProtein FamilyProteinsReceptor SignalingRecyclingRegulationResearchRoleScanningStructureTechniquesTestingTherapeuticVesicleVirusVirus Diseasesdesignenhancer-binding protein AP-2in vivoinnovationmacromoleculemutantneoplasticnovelparticlereceptor bindingscreeningspatiotemporaltool
项目摘要
Abstract - Clathrin-mediated endocytosis is the main port of entry into our cells for medically relevant
substances including cholesterol-laden particles and viruses such as influenza and hepatitis. By engulfing
signaling receptors, this fundamental cellular process also tunes our sensitivity to the potentially pathological
actions of growth factors and neuromodulators. As such, understanding how the underlying endocytic
machinery is regulated promises to reveal novel mechanisms that could be harnessed to control neoplastic,
neurodegenerative, cardiovascular, and viral diseases. At the heart of the endocytic process lies the AP2
clathrin adaptor complex which appears to undergo a conformational change during vesicle formation to
actively couple membrane and cargo to the clathrin coat. Despite the central role of AP2, we lack critical
details about how this molecular machine is regulated in vivo. To address this need, we have developed
innovative tools in C. elegans that allow us to quantify AP2 activity at multiple levels and have employed deep
genetic screens to identify two conserved protein families that appear to govern AP2 conformation and
activity. Our goal is to illuminate how these allosteric regulators of the endocytic machinery function
mechanistically. Previously it was thought that membrane phospholipids, cytosolic cargo domains, and
phosphorylation by the AP2-associated kinase (AAK1) activate AP2. Our preliminary data indicate that a
conserved region of the membrane-associated Fer/Cip4 Homology Domain-only (FCHo) proteins is required
to promote endocytosis by converting AP2 to an active complex. We have named this functionally important
domain the AP2 Activator, or APA. In Aim 1 we will test whether the APA is sufficient to induce a structural
rearrangement of AP2, as well as defining the roles of membrane, cargo, and phosphorylation in that process.
We will determine where the APA binds to AP2 by screening for C. elegans mutants that escape an APA
anchored to mitochondria. We will evaluate the physiological significance of AP2 phosphorylation by
characterizing kinase mutants. In Aim 2 we will validate our hypothesis that adaptiN-Ear-Binding Coat-
Associated Proteins (NECAP)s counteract the active (open) conformation of AP2 to ensure proper recycling
of adaptor complexes. We have discovered that AP2 accumulates in a hyper-open, hyper-phosphorylated
state in NECAP mutants, and that NECAPs specifically bind open, phosphorylated forms of AP2. We will
determine how NECAPs regulate AP2 activity and where they function within the hierarchy of AP2 modulation
using in vitro and in vivo approaches. To fully understand how NECAPs function, we will determine their
structure, and use an innovative random-scanning mutagenesis technique to determine the relevant NECAP-
AP2 contacts in vivo. The long-term impact of the proposed research will be to clarify how fundamental cellular
machinery is controlled with spatiotemporal precision in metazoans – where misregulation leads to important
diseases.
摘要 - 网格蛋白介导的内吞作用是进入我们细胞进行医学相关的主要端口
物质,包括富含胆固醇的颗粒和病毒,例如流感和肝炎。 通过吞没
信号受体,这个基本的细胞过程也调整我们对潜在病理的敏感性
生长因子和神经调节剂的作用。 因此,了解潜在的内吞作用是如何进行的
机械受到监管,有望揭示可用于控制肿瘤的新颖机制,
神经退行性疾病、心血管疾病和病毒性疾病。 AP2 是内吞过程的核心
网格蛋白接头复合物似乎在囊泡形成过程中经历构象变化
主动将膜和货物耦合到网格蛋白涂层上。 尽管 AP2 发挥着核心作用,但我们缺乏关键的
有关该分子机器在体内如何调节的详细信息。 为了满足这一需求,我们开发了
线虫中的创新工具使我们能够在多个水平上量化 AP2 活性,并深入使用
遗传筛选以鉴定两个似乎控制 AP2 构象的保守蛋白质家族
活动。 我们的目标是阐明这些内吞机制的变构调节剂如何发挥作用
机械地。 以前人们认为膜磷脂、胞质货物结构域和
AP2 相关激酶 (AAK1) 的磷酸化可激活 AP2。 我们的初步数据表明
需要膜相关 Fer/Cip4 同源域 (FCHo) 蛋白的保守区域
通过将 AP2 转化为活性复合物来促进内吞作用。 我们将其命名为“功能重要”
AP2 激活器或 APA 域。 在目标 1 中,我们将测试 APA 是否足以引发结构性的
AP2 的重排,以及定义膜、货物和磷酸化在此过程中的作用。
我们将通过筛选逃避 APA 的线虫突变体来确定 APA 与 AP2 结合的位置
锚定于线粒体。 我们将通过以下方式评估 AP2 磷酸化的生理意义
表征激酶突变体。 在目标 2 中,我们将验证我们的假设,即采用扎耳外套 -
相关蛋白 (NECAP) 抵消 AP2 的活性(开放)构象,以确保适当的回收
接头复合物。 我们发现 AP2 在超开放、超磷酸化的区域中积累
NECAP 突变体中的状态,并且 NECAP 特异性结合开放的磷酸化形式的 AP2。 我们将
确定 NECAP 如何调节 AP2 活性以及它们在 AP2 调节层次结构中发挥作用的位置
使用体外和体内方法。 为了充分了解 NECAP 的运作方式,我们将确定它们的
结构,并使用创新的随机扫描诱变技术来确定相关的 NECAP-
AP2 体内接触。 拟议研究的长期影响将是阐明细胞的基本原理
后生动物中的机器是通过时空精确控制的——调节不当会导致重要的后果
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunther Hollopeter其他文献
Gunther Hollopeter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunther Hollopeter', 18)}}的其他基金
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
10369000 - 财政年份:2019
- 资助金额:
$ 0.89万 - 项目类别:
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
10595520 - 财政年份:2019
- 资助金额:
$ 0.89万 - 项目类别:
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
9900825 - 财政年份:2019
- 资助金额:
$ 0.89万 - 项目类别:
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
10582196 - 财政年份:2019
- 资助金额:
$ 0.89万 - 项目类别:














{{item.name}}会员




