Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
基本信息
- 批准号:10582196
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnimalsBindingCaenorhabditis elegansCardiovascular DiseasesCardiovascular systemCell membraneCell physiologyCellsCholesterolClathrinClathrin AdaptorsComplexDataDiseaseEarEndocytosisEnsureEscape MutantGenetic ScreeningGoalsGrowth FactorHealthHeartHepatitisIn VitroInfluenzaLigandsMalignant NeoplasmsMediatingMedicalMembraneMitochondriaMolecularMolecular ConformationMolecular MachinesMutagenesisNamesNeurodegenerative DisordersNeuromodulatorPathologicPhospholipidsPhosphorylationPhosphotransferasesPhysiologicalProcessProtein FamilyProteinsReceptor SignalingRecyclingRegulationResearchRoleScanningStructureTechniquesTestingTherapeuticVesicleVirusVirus Diseasesenhancer-binding protein AP-2in vivoinnovationmacromoleculemutantneoplasticnovelparticlerational designreceptor bindingscreeningspatiotemporaltool
项目摘要
Abstract
Clathrin-mediated endocytosis is the main port of entry into our cells for medically relevant substances including
cholesterol-laden particles and viruses such as influenza and hepatitis. By engulfing signaling receptors, this
fundamental cellular process also tunes our sensitivity to the potentially pathological actions of growth factors
and neuromodulators. As such, understanding how the underlying endocytic machinery is regulated promises to
reveal novel mechanisms that could be harnessed to control neoplastic, neurodegenerative, cardiovascular, and
viral diseases. At the heart of the endocytic process lies the AP2 clathrin adaptor complex which appears to
undergo a conformational change during vesicle formation to actively couple membrane and cargo to the clathrin
coat. Despite the central role of AP2, we lack critical details about how this molecular machine is regulated in
vivo. To address this need, we have developed innovative tools in C. elegans that allow us to quantify AP2
activity at multiple levels and have employed deep genetic screens to identify two conserved protein families that
appear to govern AP2 conformation and activity. Our goal is to illuminate how these allosteric regulators of the
endocytic machinery function mechanistically. Previously it was thought that membrane phospholipids, cytosolic
cargo domains, and phosphorylation by the AP2-associated kinase (AAK1) activate AP2. Our preliminary data
indicate that a conserved region of the membrane-associated Fer/Cip4 Homology Domain-only (FCHo) proteins
is required to promote endocytosis by converting AP2 to an active complex. We have named this functionally
important domain the AP2 Activator, or APA. In Aim 1 we will test whether the APA is sufficient to induce a
structural rearrangement of AP2, as well as defining the roles of membrane, cargo, and phosphorylation in that
process. We will determine where the APA binds to AP2 by screening for C. elegans mutants that escape an
APA anchored to mitochondria. We will evaluate the physiological significance of AP2 phosphorylation by
characterizing kinase mutants. In Aim 2 we will validate our hypothesis that adaptiN-Ear-Binding Coat-
Associated Proteins (NECAP)s counteract the active (open) conformation of AP2 to ensure proper recycling of
adaptor complexes. We have discovered that AP2 accumulates in a hyper-open, hyper-phosphorylated state in
NECAP mutants, and that NECAPs specifically bind open, phosphorylated forms of AP2. We will determine how
NECAPs regulate AP2 activity and where they function within the hierarchy of AP2 modulation using in vitro and
in vivo approaches. To fully understand how NECAPs function, we will determine their structure, and use an
innovative random-scanning mutagenesis technique to determine the relevant NECAP-AP2 contacts in vivo. The
long-term impact of the proposed research will be to clarify how fundamental cellular machinery is controlled with
spatiotemporal precision in metazoans – where misregulation leads to important diseases.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunther Hollopeter其他文献
Gunther Hollopeter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunther Hollopeter', 18)}}的其他基金
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
10393918 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
10369000 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
10595520 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Molecular regulation of the AP2 clathrin adaptor complex
AP2 网格蛋白接头复合物的分子调控
- 批准号:
9900825 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别: