Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
基本信息
- 批准号:10393035
- 负责人:
- 金额:$ 59.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:19qAlgorithmsApplications GrantsArtificial IntelligenceAutomationBiologyBiomedical EngineeringBiopsyBrainBrain NeoplasmsClassificationClinicalComputerized Medical RecordCraniotomyDataData SetDatabasesDigital Imaging and Communications in MedicineExcisionGliomaGoalsHumanHyperacusisImageInstitutionKnowledgeMGMT geneMagnetic Resonance ImagingManualsMedical centerMethodsMethylationMolecularMolecular AnalysisMorphologic artifactsMotionNeurosurgical ProceduresNoiseOperative Surgical ProceduresPatient CarePatient-Focused OutcomesPatientsPerformancePredictive ValueProceduresProcessPrognosisProspective cohortReportingResearch Project GrantsResourcesRiskSample SizeSensitivity and SpecificityT2 weighted imagingTestingThe Cancer Genome AtlasThe Cancer Imaging ArchiveTimeTissue SampleTissuesTrainingTumor TissueUnited States National Institutes of HealthValidationWorkbaseclinical decision-makingclinical implementationclinical translationcontrast imagingcostdeep learningdeep learning algorithmexperienceimprovedlarge datasetslearning classifierlearning strategymolecular markermotion sensitivitymutational statusnovelprospectiveresponsesurgical risktooltumorvirtual biopsy
项目摘要
Project Summary
This is a Bioengineering Research Grant (BRG) proposal in response to PAR-19-158 to further develop and
validate a non-invasive panel of the most critical glioma molecular markers (IDH, 1p/19q, MGMT) using standard
clinical MRI T2-weighted images and deep learning, and extend the performance to tissue-level accuracies.
Currently, the only reliable way of obtaining molecular marker status is through direct tissue sampling of the
tumor, requiring either a craniotomy and stereotactic biopsy or a large open surgical resection. Noninvasive
determination of molecular markers with tissue-level accuracy would be transformational in the management of
gliomas, reducing or eliminating the risks and costs associated with a neurosurgical procedure, accelerating the
time to definitive treatment, improving patient experience and ultimately patient outcomes and survival time.
Artificial intelligence such as deep learning has emerged as a powerful method for classification of imaging data
that can exceed human performance. Preliminary work using our novel voxel-wise classification-segmentation
approach with the NIH/NCI TCIA glioma database has outperformed any prior noninvasive methods for
determination of IDH, 1p/19q, and MGMT methylation, achieving accuracies of 97%, 93%, and 95%,
respectively. The approach however, needs to be validated beyond the TCIA and accuracies need to be
extended in order to achieve tissue level performance. This will be accomplished by using our top-performing
voxel-wise classification framework, leveraging marker-specific targeted sample sizes, and gaining a final boost
from deep-learning artifact correction networks.
In Aim 1 we will curate a database of over 2000 gliomas including 500 subjects from our institution, 1200 subjects
from our external collaborators, and over 300 subjects from the TCIA. We will train our voxel-wise deep learning
classifiers to determine molecular status based on clinical T2-weighted MR images with target accuracies of
97%. In Aim 2 we will rigorously evaluate the motion and noise sensitivity of the networks and create an artifact
correction network with the goals of 1) recovering accuracies in the setting of large amounts of motion/noise and
2) further boosting accuracy to tissue-level performance even in the absence of visible artifact. In Aim 3 we will
deploy a complete end-to-end clinical workflow and evaluate real-world live performance of the AI tool on 300
prospectively acquired brain tumor cases and 300 subjects from our external collaborators. The AI tool will be
made available for deployment at other medical centers. The developed framework can also be extended to
additional markers in a straightforward fashion. In summary, this BRG proposal will further develop, refine and
validate a non-invasive MRI-based method for determining the most critical glioma molecular markers rivaling
tissue-level accuracies to significantly reduce and in many cases eliminate the need for stereotactic biopsy.
项目摘要
这是一个生物工程研究资助(BRG)的建议,以响应PAR-19-158,以进一步发展和
使用标准方法验证一组最关键的神经胶质瘤分子标志物(IDH,1 p/19 q,MGMT)的非侵入性
临床MRI T2加权图像和深度学习,并将性能扩展到组织级精度。
目前,获得分子标记状态的唯一可靠方法是通过直接组织取样,
肿瘤,需要开颅术和立体定向活检或大的开放手术切除。无创
具有组织水平准确性的分子标记物的确定将在管理
神经胶质瘤,减少或消除与神经外科手术相关的风险和成本,加速
确定治疗的时间,改善患者体验,最终改善患者结局和生存时间。
深度学习等人工智能已经成为成像数据分类的强大方法
可以超越人类的表现。初步工作使用我们的新的体素明智的分类分割
NIH/NCI TCIA胶质瘤数据库的方法优于任何先前的非侵入性方法,
IDH、1 p/19 q和MGMT甲基化的测定,准确率分别为97%、93%和95%,
分别然而,该方法需要在TCIA之外进行验证,并且需要
延长以实现组织水平性能。这将通过使用我们的顶级性能
体素分类框架,利用特定于标记的目标样本大小,并获得最终提升
深度学习伪影校正网络。
在目标1中,我们将整理一个包含2000多个胶质瘤的数据库,其中包括来自我们机构的500名受试者,1200名受试者,
来自我们的外部合作者,以及来自TCIA的300多名受试者。我们将训练我们的体素深度学习
基于临床T2加权MR图像确定分子状态的分类器,目标精度为
百分之九十七在目标2中,我们将严格评估网络的运动和噪声敏感度,并创建伪影
校正网络的目标是:1)在大量运动/噪声的设置中恢复精度,
2)甚至在没有可见伪影的情况下也进一步提高组织级性能的准确性。在目标3中,
部署完整的端到端临床工作流程,并在300台机器上评估AI工具的真实实时性能
前瞻性获得的脑肿瘤病例和300例外部合作者的受试者。AI工具将是
可在其他医疗中心部署。开发的框架还可以扩展到
以简单的方式添加标记。总之,BRG提案将进一步发展、完善和
验证一种非侵入性的基于MRI的方法,用于确定最关键的神经胶质瘤分子标记物,
组织水平的准确性,以显着减少,并在许多情况下消除立体定向活检的需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph A Maldjian其他文献
Joseph A Maldjian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph A Maldjian', 18)}}的其他基金
Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
- 批准号:
10596130 - 财政年份:2021
- 资助金额:
$ 59.55万 - 项目类别:
Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
- 批准号:
10226632 - 财政年份:2021
- 资助金额:
$ 59.55万 - 项目类别:
iTAKL:Imaging Telemetry And Kinematic modeLing in youth football-High School
iTAKL:青少年足球中的成像遥测和运动学模型-高中
- 批准号:
9981037 - 财政年份:2016
- 资助金额:
$ 59.55万 - 项目类别:
Sports Related Subconcussive Impacts in Children: MRI & Biomechanical Correlates
儿童运动相关的亚脑震荡影响:MRI
- 批准号:
8845636 - 财政年份:2014
- 资助金额:
$ 59.55万 - 项目类别:
Sports Related Subconcussive Impacts in Children: MRI & Biomechanical Correlates
儿童运动相关的亚脑震荡影响:MRI
- 批准号:
8748697 - 财政年份:2014
- 资助金额:
$ 59.55万 - 项目类别:
Uncovering Brain Anatomy/Function/Relationships using Biologic Parametric Mapping
使用生物参数映射揭示大脑解剖结构/功能/关系
- 批准号:
7020238 - 财政年份:2004
- 资助金额:
$ 59.55万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 59.55万 - 项目类别:
Continuing Grant














{{item.name}}会员




