Virtual Biopsy with Tissue-level Accuracy in Glioma

神经胶质瘤中具有组织水平精度的虚拟活检

基本信息

  • 批准号:
    10596130
  • 负责人:
  • 金额:
    $ 61.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary This is a Bioengineering Research Grant (BRG) proposal in response to PAR-19-158 to further develop and validate a non-invasive panel of the most critical glioma molecular markers (IDH, 1p/19q, MGMT) using standard clinical MRI T2-weighted images and deep learning, and extend the performance to tissue-level accuracies. Currently, the only reliable way of obtaining molecular marker status is through direct tissue sampling of the tumor, requiring either a craniotomy and stereotactic biopsy or a large open surgical resection. Noninvasive determination of molecular markers with tissue-level accuracy would be transformational in the management of gliomas, reducing or eliminating the risks and costs associated with a neurosurgical procedure, accelerating the time to definitive treatment, improving patient experience and ultimately patient outcomes and survival time. Artificial intelligence such as deep learning has emerged as a powerful method for classification of imaging data that can exceed human performance. Preliminary work using our novel voxel-wise classification-segmentation approach with the NIH/NCI TCIA glioma database has outperformed any prior noninvasive methods for determination of IDH, 1p/19q, and MGMT methylation, achieving accuracies of 97%, 93%, and 95%, respectively. The approach however, needs to be validated beyond the TCIA and accuracies need to be extended in order to achieve tissue level performance. This will be accomplished by using our top-performing voxel-wise classification framework, leveraging marker-specific targeted sample sizes, and gaining a final boost from deep-learning artifact correction networks. In Aim 1 we will curate a database of over 2000 gliomas including 500 subjects from our institution, 1200 subjects from our external collaborators, and over 300 subjects from the TCIA. We will train our voxel-wise deep learning classifiers to determine molecular status based on clinical T2-weighted MR images with target accuracies of 97%. In Aim 2 we will rigorously evaluate the motion and noise sensitivity of the networks and create an artifact correction network with the goals of 1) recovering accuracies in the setting of large amounts of motion/noise and 2) further boosting accuracy to tissue-level performance even in the absence of visible artifact. In Aim 3 we will deploy a complete end-to-end clinical workflow and evaluate real-world live performance of the AI tool on 300 prospectively acquired brain tumor cases and 300 subjects from our external collaborators. The AI tool will be made available for deployment at other medical centers. The developed framework can also be extended to additional markers in a straightforward fashion. In summary, this BRG proposal will further develop, refine and validate a non-invasive MRI-based method for determining the most critical glioma molecular markers rivaling tissue-level accuracies to significantly reduce and in many cases eliminate the need for stereotactic biopsy.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph A Maldjian其他文献

Joseph A Maldjian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph A Maldjian', 18)}}的其他基金

Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
  • 批准号:
    10393035
  • 财政年份:
    2021
  • 资助金额:
    $ 61.85万
  • 项目类别:
Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
  • 批准号:
    10226632
  • 财政年份:
    2021
  • 资助金额:
    $ 61.85万
  • 项目类别:
iTAKL:Imaging Telemetry And Kinematic modeLing in youth football-High School
iTAKL:青少年足球中的成像遥测和运动学模型-高中
  • 批准号:
    9981037
  • 财政年份:
    2016
  • 资助金额:
    $ 61.85万
  • 项目类别:
Sports Related Subconcussive Impacts in Children: MRI & Biomechanical Correlates
儿童运动相关的亚脑震荡影响:MRI
  • 批准号:
    8845636
  • 财政年份:
    2014
  • 资助金额:
    $ 61.85万
  • 项目类别:
Sports Related Subconcussive Impacts in Children: MRI & Biomechanical Correlates
儿童运动相关的亚脑震荡影响:MRI
  • 批准号:
    8748697
  • 财政年份:
    2014
  • 资助金额:
    $ 61.85万
  • 项目类别:
WFU_Pickatlas Interoperability
WFU_Pickatlas 互操作性
  • 批准号:
    7500363
  • 财政年份:
    2008
  • 资助金额:
    $ 61.85万
  • 项目类别:
Uncovering Brain Anatomy/Function/Relationships using Biologic Parametric Mapping
使用生物参数映射揭示大脑解剖结构/功能/关系
  • 批准号:
    7020238
  • 财政年份:
    2004
  • 资助金额:
    $ 61.85万
  • 项目类别:
Integrated Tool for Biological Parametric Mapping
生物参数绘图集成工具
  • 批准号:
    7068116
  • 财政年份:
    2004
  • 资助金额:
    $ 61.85万
  • 项目类别:
Integrated Tool for Biological Parametric Mapping
生物参数绘图集成工具
  • 批准号:
    6931139
  • 财政年份:
    2004
  • 资助金额:
    $ 61.85万
  • 项目类别:
Integrated Tool for Biological Parametric Mapping
生物参数绘图集成工具
  • 批准号:
    6803804
  • 财政年份:
    2004
  • 资助金额:
    $ 61.85万
  • 项目类别:

相似海外基金

Shared and Distributed Memory Parallel Pre-Conditioning and Acceleration Algorithms for "Spline- Enhanced" Spatial Discretisations
用于“样条增强”空间离散化的共享和分布式内存并行预处理和加速算法
  • 批准号:
    2907459
  • 财政年份:
    2023
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Studentship
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2022
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Discovery Grants Program - Individual
Acceleration framework for training deep learning by cooperative with algorithms and computer architectures
通过与算法和计算机架构合作训练深度学习的加速框架
  • 批准号:
    21K17768
  • 财政年份:
    2021
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2021
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Discovery Grants Program - Individual
Material and Device Building Blocks for Hardware Acceleration of Machine Learning and Artificial Intelligence Algorithms
用于机器学习和人工智能算法硬件加速的材料和设备构建模块
  • 批准号:
    2004791
  • 财政年份:
    2020
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909291
  • 财政年份:
    2019
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
  • 批准号:
    ST/S005560/1
  • 财政年份:
    2019
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Training Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909298
  • 财政年份:
    2019
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
  • 批准号:
    2348748
  • 财政年份:
    2019
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Studentship
OAC Core: Small: Enabling High-fidelity Turbulent Reacting-Flow Simulations through Advanced Algorithms, Code Acceleration, and High-order Methods for Extreme-scale Computing
OAC 核心:小型:通过高级算法、代码加速和超大规模计算的高阶方法实现高保真湍流反应流模拟
  • 批准号:
    1909379
  • 财政年份:
    2019
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了