Ti-Catalyzed Oxidative Amination Reactions
Ti 催化的氧化胺化反应
基本信息
- 批准号:10394309
- 负责人:
- 金额:$ 39.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlkynesAminationAnti-Inflammatory AgentsAnticoagulantsArchitectureArthritisBlood coagulationCarbonCatalysisCommunitiesCouplingDataDevelopmentElectronsExcisionFDA approvedGoalsHydrazinesIminesLaboratoriesLeadMethodsMolecularNitrilesNitrogenOxidantsOxidation-ReductionPharmaceutical ChemistryPharmaceutical PreparationsPlanet EarthPublic HealthPyrazolesReactionReagentRecoveryResearchResearch PersonnelStatistical Data InterpretationStroke preventionStructureSystemTechnologyTitaniumTransition ElementsWorkcatalystcelecoxibchemical synthesisdesignfunctional groupinsightnovelnovel therapeuticsoxidationscaffoldsmall moleculetool
项目摘要
Project Summary
The goal of this proposal is to design new Ti-catalyzed oxidation reactions to modularly assemble pyrazole
derivatives and difunctionalize alkynes. The rationale for developing Ti catalysis is that Ti is earth-abundant and
generally nontoxic, which obviates the need for efficient catalyst removal and recovery in fine chemical synthesis.
Early transition metals can access different structures and elementary reaction steps than late transition metals,
resulting in bond forming strategies that are complementary or orthogonal to existing technology.
First, the proposed research concerns developing new dual catalytic strategies for the [2+2+1] synthesis of
pyrazoles. Using preliminary data gained in our laboratory on stoichiometric oxidation-induced N-N reductive
elimination reactions, we will explore single-electron catalytic and photocatalytic strategies for oxidant turnover.
Development of a catalytic strategy for electronegative bond couplings like N-N coupling will ultimately lead to
mild and general dual catalyst systems for the rapid, modular construction of high-value bioactive pyrazoles, and
also open avenues for advancing other challenging bond coupling reactions in catalysis.
Further, we will design selective alkyne carboamination reactions, building off of preliminary results into this
reaction class. Alkyne carboamination reactions can lead to iminocyclopropanes and unsaturated imines, each
of which are valuable heterocycle building blocks. Our strategy for selective reaction design will be to use ISPCA,
a new statistical analysis method we have developed that aids in determination of key control factors in a reaction.
Concurrent refinement of ISPCA along with carboamination catalysis will yield both synthetically practical
reactions, as well as a tool and roadmap for other catalysis researchers to follow in designing selective reactions.
Finally, we will use our mechanistic insight of Ti redox catalysis to design new multicomponent alkyne
oxidation reactions. A key focus of this work will be to develop strategies that incorporate more heteroatoms into
the products, using our preliminary discoveries in dual catalysis and N-N reductive elimination. These reactions
will result in catalytic methods to rapidly produce functional-group rich carbon scaffolds.
Relevance to public health. Nitrogen heterocycles constitute the single most prevalent class of functional
groups in FDA-approved small-molecule drugs: 59% of all unique small molecule drugs contain at least one N-
heterocycle. Pyrazoles are an important class within this group, and have broad bioactivity. Although many
reactions to form pyrazoles exist, their synthesis often relies on using potentially toxic and explosive hydrazines,
and have well-established regioselectivity limitations. A general synthesis of pyrazoles that overcomes these
limitations is an unmet challenge. By designing methods to pyrazoles, and more generally to the catalytic
formation of weak bonds like N-N bonds, synthetic chemists will have rapid and convergent access to diverse
and novel molecular architectures. These building blocks will aid in the development of new small molecule drug-
like architectures for the biomedical community.
项目摘要
本论文的目标是设计新的钛催化氧化反应来组装吡唑
衍生物和双官能化炔。开发Ti催化剂的基本原理是Ti是地球上丰富的,
通常无毒,这避免了在精细化学合成中有效去除和回收催化剂的需要。
早期过渡金属可以获得与后过渡金属不同的结构和基元反应步骤,
导致与现有技术互补或正交的键合形成策略。
首先,所提出的研究涉及开发新的双催化策略用于[2+2+1]合成
吡唑。利用实验室获得的化学计量氧化诱导的N-N还原的初步数据,
消除反应,我们将探索单电子催化和光催化氧化剂周转策略。
开发用于电负性键偶联(如N-N偶联)的催化策略将最终导致
温和且通用的双催化剂系统,用于快速、模块化构建高价值生物活性吡唑,以及
也为推进催化中其他具有挑战性的键偶联反应开辟了途径。
此外,我们将设计选择性的炔碳胺化反应,建立了初步的结果到这个
反应类。炔碳胺化反应可产生亚氨基环丙烷和不饱和亚胺,
它们是有价值的杂环结构单元。我们的选择性反应设计策略是使用ISPCA,
我们开发了一种新的统计分析方法,有助于确定反应中的关键控制因素。
ISPCA沿着碳胺化催化的同时精制将产生综合实用的
反应,以及其他催化研究人员在设计选择性反应时遵循的工具和路线图。
最后,我们将利用我们对钛氧化还原催化的机理认识来设计新的多组分炔
氧化反应这项工作的一个关键重点将是开发将更多杂原子纳入
利用我们在双催化和N-N还原消除方面的初步发现,合成了这些产物。这些反应
将导致催化方法快速产生富含官能团的碳支架。
与公共卫生的相关性。氮杂环构成了单一的最普遍的官能化的类别。
在FDA批准的小分子药物中,59%的独特小分子药物含有至少一个N-
杂环。吡唑类化合物是该类化合物中的重要一类,具有广泛的生物活性。尽管许多
存在形成吡唑的反应,它们的合成通常依赖于使用潜在有毒和爆炸性的肼,
并具有公认的区域选择性限制。吡唑的一般合成克服了这些问题,
局限性是一个尚未满足的挑战。通过设计吡唑类化合物的方法,更一般地,
形成弱键,如N-N键,合成化学家将有快速和收敛的方式获得不同的
和新颖的分子结构。这些基本组成部分将有助于开发新的小分子药物-
比如生物医学领域的建筑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Albert Tonks其他文献
Ian Albert Tonks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Albert Tonks', 18)}}的其他基金
相似海外基金
Replacing Aldehydes in Reductive Amination
在还原胺化中取代醛
- 批准号:
2870985 - 财政年份:2023
- 资助金额:
$ 39.33万 - 项目类别:
Studentship
Development of Intermolecular Amination Utilizing Iminyl Radical Species
利用亚氨基自由基进行分子间胺化的进展
- 批准号:
22KJ2056 - 财政年份:2023
- 资助金额:
$ 39.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Cu-catalysed Amination of Alkylboron Reagents
铜催化烷基硼胺化试剂
- 批准号:
2902162 - 财政年份:2023
- 资助金额:
$ 39.33万 - 项目类别:
Studentship
Nucleophilic amination with an azanide surrogate
与氮氧化物替代物的亲核胺化
- 批准号:
2905473 - 财政年份:2023
- 资助金额:
$ 39.33万 - 项目类别:
Studentship
A Radical Amination Approach to Aliphatic Amines
脂肪胺的自由基胺化方法
- 批准号:
EP/V050176/1 - 财政年份:2022
- 资助金额:
$ 39.33万 - 项目类别:
Research Grant
Ruthenium-catalyzed Late Stage Amination of arenes
钌催化芳烃的后期胺化
- 批准号:
2752687 - 财政年份:2022
- 资助金额:
$ 39.33万 - 项目类别:
Studentship
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
- 批准号:
2140374 - 财政年份:2022
- 资助金额:
$ 39.33万 - 项目类别:
Standard Grant
Accessing 3-Alkyl 3-Amino Oxetanes by Carbonyl Alkylative Amination
通过羰基烷基化胺化获得 3-烷基 3-氨基氧杂环丁烷
- 批准号:
2638334 - 财政年份:2021
- 资助金额:
$ 39.33万 - 项目类别:
Studentship
Enzyme carbomimetics: Single site sustainable catalysts for alcohols amination
酶碳模拟物:用于醇胺化的单中心可持续催化剂
- 批准号:
2606065 - 财政年份:2021
- 资助金额:
$ 39.33万 - 项目类别:
Studentship
Intramolecular Guanine C8-Amination for the Synthesis of Guanosine Cyclonucleosides
分子内鸟嘌呤 C8-氨基化用于鸟苷环核苷的合成
- 批准号:
2638422 - 财政年份:2021
- 资助金额:
$ 39.33万 - 项目类别:
Studentship