Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
基本信息
- 批准号:10394965
- 负责人:
- 金额:$ 35.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlgorithmsAnatomic ModelsAnatomyArchitectureAttentionBenchmarkingBiophotonicsBrainCommunitiesComplexComputer softwareDataDevelopmentDiagnosticDiseaseDocumentationEducational workshopEnvironmentEvolutionFundingFuture GenerationsHealthHumanHybridsImageIndustryLettersLibrariesLightLinuxLungManufacturer NameMethodsMicroscopicModalityModelingModernizationMonte Carlo MethodMotivationOnline SystemsOpticsOutputPaperPerformancePhotonsPlayReadabilityReproducibilityResearchResource SharingResourcesRoleShapesSpeedTechniquesTherapeuticTimeTissuesTracerTrainingTraining ProgramsTraining SupportUnited States National Institutes of HealthWorkbasecomplex biological systemscomputerized toolscostdata standardsdeep learningdenoisingdesignflexibilitygraphical user interfaceimprovedinstrumentationinteroperabilitynext generationnovelnovel strategiesopen dataopen sourceopen source toolportabilityrapid growthsimulationsimulation environmentsoftware developmentsuccesstoolusability
项目摘要
Project Summary/Abstract
Abstract: The rapid evolution of the field of biophotonics has produced numerous emerging techniques for
combatting diseases and addressing urgent human health challenges, offering safe, non-invasive, and portable
light-based diagnostic and therapeutic methods, and attracting exponentially growing attention over the past
decade. Rigorous, fast, versatile and publicly available computational tools have played pivotal roles in
the success of these novel approaches, leading to breakthroughs in new instrumentation designs and
extensive explorations of complex biological systems such as human brains. The Monte Carlo eXtreme (MCX,
http://mcx.space) light transport simulation platform developed by our team has become one of the most widely
disseminated biophotonics modeling platforms, known for its high accuracy, high speed and versatility, as
attested to by its over 27,000 downloads and nearly 1,000 citations from a large (2,400+ registered users)
world-wide user community. Over the past years, we have also been pushing the boundaries in cutting-edge
Monte Carlo (MC) photon simulation algorithms by exploring modern GPU architectures, advanced anatomical
modeling methods and systematic software optimizations. In this proposed project, we will build upon the
strong momentum created in the initial funding period, and strive to further advance the state-of-the-art of
GPU-accelerated MC light transport modeling with strong support from the world’s leading GPU manufacturers
and experts, further expanding our platform to address a number of emerging challenges in biomedical optics
applications. Specifically, we will further explore emerging GPU architecture and resources, such as ray-
tracing cores, half- and mixed-precision hardware, and portable programming models, to further accelerate the
MC modeling speed. We will also develop hybrid shape/mesh-based MC algorithms to dramatically advance
the capability in simulating extremely complex yet realistic anatomical structures, such as porous tissues in the
lung, dense vessel networks in the brain, and multi-scaled tissue domains. In parallel, we aim to make a break-
through in applying deep-learning-based image denoising techniques to equivalently accelerate MC
simulations by 2 to 3 orders of magnitudes, as suggested in our preliminary studies. In the continuation of this
project, we strive to create a dynamic and community-engaging simulation environment by extending our
software to allow users to create, share, browse, and reuse pre-configured simulations, avoiding
redundant works in re-creating complex simulations and facilitating reproducible research. In addition, we will
expand our well-received user training programs and widely disseminate our open-source tools via major Linux
distributions and container images. At the end of this continued funding period, we will provide the community
with a significantly accelerated, widely-available and well-supported biophotonics modeling platform that
can handle multi-scaled tissue optical modeling ranging from microscopic to macroscopic domains.
项目总结/摘要
翻译后摘要:生物光子学领域的快速发展产生了许多新兴的技术,
抗击疾病和应对紧迫的人类健康挑战,提供安全、非侵入性和便携式
光为基础的诊断和治疗方法,并吸引了指数增长的关注,在过去的
十年严格、快速、通用和公开可用的计算工具在以下方面发挥了关键作用:
这些新方法的成功,导致新仪器设计的突破,
对复杂生物系统如人脑的广泛探索。蒙特卡洛极限(MCX,
http://mcx.space
分布式生物光子建模平台,以其高精度,高速度和多功能性而闻名,
超过27,000次下载和近1,000次引用(2,400+注册用户)证明了这一点
全球用户社区。在过去的几年里,我们也一直在推动前沿领域的界限,
蒙特卡罗(MC)光子模拟算法,通过探索现代GPU架构,先进的解剖
建模方法和系统的软件优化。在这项建议计划中,我们会以
在最初的资助期间创造了强劲的势头,并努力进一步推进最先进的
GPU加速的MC轻型传输建模,得到全球领先GPU制造商的大力支持
进一步扩大我们的平台,以应对生物医学光学领域的一些新兴挑战
应用.具体来说,我们将进一步探索新兴的GPU架构和资源,比如ray-
跟踪核心、半精度和混合精度硬件以及可移植编程模型,以进一步加速
MC建模速度。我们还将开发基于形状/网格的混合MC算法,
模拟极其复杂但逼真的解剖结构的能力,例如
肺、脑中的致密血管网络和多尺度组织域。与此同时,我们的目标是打破-
通过应用基于深度学习的图像去噪技术,
正如我们的初步研究所建议的那样,模拟了2到3个数量级。在这一延续中,
项目,我们努力创造一个动态和社区参与的模拟环境,通过扩展我们的
允许用户创建、共享、浏览和重复使用预配置模拟的软件,
重复的工作,重新创建复杂的模拟和促进可重复的研究。此外,我们将
扩展我们广受欢迎的用户培训计划,并通过主要的Linux广泛传播我们的开源工具
发行版和容器镜像。在这一持续资助期结束时,我们将为社区提供
具有显著加速、广泛可用且支持良好的生物光子学建模平台,
可以处理从微观到宏观领域的多尺度组织光学建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qianqian Fang其他文献
Qianqian Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qianqian Fang', 18)}}的其他基金
NeuroJSON - A Scalable, Searchable and Verifiable Neuroimaging Data Platform
NeuroJSON - 可扩展、可搜索和可验证的神经影像数据平台
- 批准号:
10308329 - 财政年份:2021
- 资助金额:
$ 35.07万 - 项目类别:
NeuroJSON - A Scalable, Searchable and Verifiable Neuroimaging Data Platform
NeuroJSON - 可扩展、可搜索和可验证的神经影像数据平台
- 批准号:
10476470 - 财政年份:2021
- 资助金额:
$ 35.07万 - 项目类别:
Next-generation optical brain functional imaging platform
下一代光学脑功能成像平台
- 批准号:
9789883 - 财政年份:2018
- 资助金额:
$ 35.07万 - 项目类别:
A versatile high-performance optical mammography co-imager
多功能高性能光学乳腺X线摄影联合成像仪
- 批准号:
9080941 - 财政年份:2016
- 资助金额:
$ 35.07万 - 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
- 批准号:
10228757 - 财政年份:2015
- 资助金额:
$ 35.07万 - 项目类别:
GPU-Accelerated Monte Carlo Photon Transport Simulation Platform
GPU 加速蒙特卡罗光子传输仿真平台
- 批准号:
9173099 - 财政年份:2015
- 资助金额:
$ 35.07万 - 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
- 批准号:
10701664 - 财政年份:2015
- 资助金额:
$ 35.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Research Grant














{{item.name}}会员




