NeuroJSON - A Scalable, Searchable and Verifiable Neuroimaging Data Platform

NeuroJSON - 可扩展、可搜索和可验证的神经影像数据平台

基本信息

  • 批准号:
    10308329
  • 负责人:
  • 金额:
    $ 38.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Traditional file-based neuroimaging data management and integration strategies have shown increasing limitations in accommodating the meteoric growth in both the scale and complexity of today’s neuroimaging data. The sophisticated software and hardware pipelines required in many of today’s neuroimaging studies have produced numerous platform-specific data files that are increasingly difficult to parse, exchange, and understand by the broader research community. Modern neuroimaging studies are hampered by not only the challenge of parsing and managing rigid and diverse file types, but also the lack of a unified interface for systematic data validation, query, manipulation and integration, thereby limiting its ability to handle large datasets. Creating a future-proof, highly scalable, and low-maintenance data storage and dissemination platform is highly desirable for the broad and rapidly growing neuroimaging community. The future of neuroimaging data management must be scalable, searchable, verifiable, and capable of accommodating highly complex hierarchical data generated from complex paradigms involving multi-modal inputs. Inspired by the great success of NoSQL database platforms, we envision that a unified database interface for managing complex neuroimaging data and exchanging human-readable hierarchical data records will be highly suitable to address the urgent needs of next-generation neuroimaging data management. In this project, we aim to solidify a series of easy-to-adopt, easy-to-extend, human-readable JSON (http://json.org) based data file specifications to systematically assist the storage, exchange and integration of existing and emerging neuroimaging datasets. These JSON-encoded universal data files readily enable users to utilize highly scalable and high-performance NoSQL databases, such as CouchDB and MongoDB, to rapidly disseminate large, NIH-funded neuroimaging public datasets, and enable validation and automation. Our group has been a major contributor to JSON-based scientific data storage since 2011. We have published open- source specifications (http://openjdata.org) to standardize the exchange of neuroimaging data for common formats such as NIfTI/GIfTI/SNIRF, building a solid foundation for application-specific adoptions. In this project, we seek to further develop, solidify, and disseminate JSON-based data exchange specifications and NoSQL databases. We have built collaborations to major neuroimaging data analysis stakeholders, such as FreeSurfer, SPM, FieldTrip, HOMER, BrainStorm. At the end of this project, we will be able to 1) develop a set of stable universal file formats that greatly modernize data sharing in neuroimaging applications, easing future maintenance and extension, and 2) provide open-source tools for users to build NoSQL database backends to facilitate integration and automation of public/private databases, enabling query, validation, and scale-up. Success in this project will result in a robust data exchange platform to facilitate convenient data sharing, promote reproducible research, and forge efficient collaborations among a broad neuroimaging community.
传统的基于文件的神经成像数据管理和整合策略已经显示

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qianqian Fang其他文献

Qianqian Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qianqian Fang', 18)}}的其他基金

NeuroJSON - A Scalable, Searchable and Verifiable Neuroimaging Data Platform
NeuroJSON - 可扩展、可搜索和可验证的神经影像数据平台
  • 批准号:
    10476470
  • 财政年份:
    2021
  • 资助金额:
    $ 38.51万
  • 项目类别:
Next-generation optical brain functional imaging platform
下一代光学脑功能成像平台
  • 批准号:
    9789883
  • 财政年份:
    2018
  • 资助金额:
    $ 38.51万
  • 项目类别:
A versatile high-performance optical mammography co-imager
多功能高性能光学乳腺X线摄影联合成像仪
  • 批准号:
    9080941
  • 财政年份:
    2016
  • 资助金额:
    $ 38.51万
  • 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
  • 批准号:
    10228757
  • 财政年份:
    2015
  • 资助金额:
    $ 38.51万
  • 项目类别:
GPU-Accelerated Monte Carlo Photon Transport Simulation Platform
GPU 加速蒙特卡罗光子传输仿真平台
  • 批准号:
    9173099
  • 财政年份:
    2015
  • 资助金额:
    $ 38.51万
  • 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
  • 批准号:
    10394965
  • 财政年份:
    2015
  • 资助金额:
    $ 38.51万
  • 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
  • 批准号:
    10701664
  • 财政年份:
    2015
  • 资助金额:
    $ 38.51万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了