Next-generation optical brain functional imaging platform
下一代光学脑功能成像平台
基本信息
- 批准号:9789883
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAlgorithmsAnatomyAtlasesAwarenessBase of the BrainBehavior DisordersBrainBrain imagingClinicalClinical ResearchCommunicationComplexComputer SimulationCouplingCraniocerebral TraumaData AnalysesDatabasesElectroencephalographyEnvironmentExhibitsFunctional ImagingFunctional Magnetic Resonance ImagingGoalsGoldHeadHumanImageImage AnalysisImaging TechniquesIntracranial HypertensionLightMeasuresMental DepressionMethodsModalityModelingMonitorMotorNear-Infrared SpectroscopyNeurosciences ResearchOpticsOutputPatternPerformancePlayPositioning AttributePositron-Emission TomographyProtocols documentationResearch PersonnelResolutionRestRoleRunningSchizophreniaSensorySleeplessnessSoftware ToolsSourceStimulusStructureSystemTechniquesThinnessTimeValidationVisionVisual impairmentWeightWireless Technologyanalysis pipelinebasecognitive processcohortcombatcontrast imagingcostdata acquisitiondensitydesigndetectordiffuse optical tomographyflexibilityflexible electronicshemodynamicshuman imagingimage processingimage reconstructionimaging modalityimaging platformimaging systemimprovedin vivo imaginginnovationlaboratory experimentlight weightnervous system disorderneuroimagingnext generationnon-invasive imagingoptical fiberoptical imagingportabilitypost strokepost-traumatic stressreconstructionresponsesensorspatiotemporalstroke patientstroke rehabilitationtomographyvolunteer
项目摘要
Project Summary/Abstract
A more thorough understanding of human brain function has profound implications for advancing neuroscience
research and combatting neurological disease. Despite tremendous progress towards this goal through
contemporary neuroimaging techniques, a number of challenges remain unaddressed, such as a lack of safe
and non-invasive imaging modalities for continuous brain function assessments, limited spatiotemporal
resolution in in vivo imaging of human brain dynamics, and suboptimal accuracy due to improper consideration
of complex 3D brain anatomy. Moreover, human brain functions exhibit complex and hierarchical patterns
ranging from basic motor/sensory responses to advanced cognitive processes. Restricted by the poor
portability of fMRI, MEG, and PET, as well as the low spatial resolution in EEG, conventional neuroimaging
paradigms predominantly involve in-lab experiments with limited types of stimuli and interactions. This limited
exploration of brain functions hinders our progress in understanding the brain. As strongly echoed in the
BRAIN 2025 Scientific Vision, innovations in flexible, wearable and quantitative neuroimaging techniques that
impose minimal restrictions to the subject will enable studies of advanced brain dynamics that are only
apparent when measured in a natural environment.
In the past decade, an emerging neuroimaging technique – functional near-infrared spectroscopy (fNIRS)
– has shown great promise for safe and long-term monitoring of brain activity using low-power light. However,
most existing fNIRS systems require the use of a headgear attached to a cart-sized optical unit via numerous
and fragile optical fibers and output only topographic (instead of tomographic) images of limited spatial
resolution. These limitations greatly hinder fNIRS’s widespread use.
In this proposal, we aim to advance optical brain imaging to the next generation by developing a
wireless, ultra-portable, modular, and fiberless advanced optical brain imaging platform (AOBI). By using
innovative flexible-circuit based modular optical circuits, the proposed imaging system is light-weight,
wearable, and safe for long-term monitoring. Our specific aims are 1) develop full-head-conforming 3D-
aware optical brain imaging headgear using flex-circuit and reconfigurable optical modules, 2) develop high-
resolution optical brain image processing pipelines using prior-guided reconstruction algorithms, and 3)
run a small-scale clinical validation (N=15) to show proof-of-concept of monitoring post-stroke rehabilitation
using the proposed system. If successfully developed, the proposed AOBI imaging platform will deliver several
orders of magnitude reduction in cost and weight, 5 to 10-fold higher in imaging contrast, and 2-3 times
better in resolution compared to conventional fNIRS techniques. This new platform may play an important
role in monitoring post-stroke rehabilitation, assessing visual impairment, intracranial hypertension, insomnia,
depression, head injuries, and behavioral disorders such as schizophrenia, bipolar, and post-traumatic stress.
项目摘要/摘要
更透彻地了解人脑功能对推动神经科学的发展具有深远的意义
研究和抗击神经系统疾病。尽管在实现这一目标方面取得了巨大进展
现代神经成像技术,仍有许多挑战尚未解决,例如缺乏安全性
和用于连续脑功能评估的非侵入性成像方式,有限的时空
人脑动态活体成像的分辨率,以及由于考虑不当而导致的次优精度
复杂的3D大脑解剖结构。此外,人脑功能表现出复杂的层次化模式
从基本的运动/感觉反应到高级认知过程。受制于穷人
功能磁共振成像、脑磁图和正电子发射计算机断层扫描的便携性,以及脑电和常规神经成像的低空间分辨率
范例主要包括实验室内的实验,以及有限类型的刺激和相互作用。这是有限的
对大脑功能的探索阻碍了我们对大脑的理解。就像强烈呼应在
Brain 2025科学愿景,灵活、可穿戴和定量神经成像技术的创新
对受试者施加最低限度的限制将使对高级大脑动力学的研究成为可能
在自然环境中测量时很明显。
在过去的十年中,一种新兴的神经成像技术--功能近红外光谱(FNIRS)
-在使用低功率光安全和长期监测大脑活动方面显示出巨大的希望。然而,
大多数现有的fNIR系统需要使用一个头盔,该头盔通过许多
和脆弱的光纤,并且仅输出有限空间的地形(而不是层析)图像
决议。这些局限性极大地阻碍了fNIRS的广泛应用。
在这项提案中,我们的目标是通过开发一种光学脑成像技术来推动下一代大脑成像
无线、超便携、模块化和无光纤高级光学脑成像平台(AOBI)。通过使用
创新的基于柔性电路的模块化光学电路,所提出的成像系统重量轻,
可穿戴,长期监控安全。我们的具体目标是1)开发完全符合头部的3D-
采用柔性电路和可重构光学模块的AWARE光学脑成像头盔,2)开发高性能
使用先验引导重建算法的分辨率光学脑图像处理流水线,以及3)
进行小规模临床验证(N=15),以显示监测中风后康复的概念验证
使用建议的系统。如果成功开发,拟议的AOBI成像平台将提供几个
成本和重量降低数量级,成像对比度提高5到10倍,2到3倍
与传统的fNIR技术相比,分辨率更高。这个新平台可能会发挥重要的作用
在监测中风后康复、评估视力障碍、颅内压增高、失眠、
抑郁症、头部损伤和行为障碍,如精神分裂症、躁郁症和创伤后应激。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qianqian Fang其他文献
Qianqian Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qianqian Fang', 18)}}的其他基金
NeuroJSON - A Scalable, Searchable and Verifiable Neuroimaging Data Platform
NeuroJSON - 可扩展、可搜索和可验证的神经影像数据平台
- 批准号:
10308329 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
NeuroJSON - A Scalable, Searchable and Verifiable Neuroimaging Data Platform
NeuroJSON - 可扩展、可搜索和可验证的神经影像数据平台
- 批准号:
10476470 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
A versatile high-performance optical mammography co-imager
多功能高性能光学乳腺X线摄影联合成像仪
- 批准号:
9080941 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
- 批准号:
10228757 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
GPU-Accelerated Monte Carlo Photon Transport Simulation Platform
GPU 加速蒙特卡罗光子传输仿真平台
- 批准号:
9173099 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
- 批准号:
10394965 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Next-generation Monte Carlo eXtreme Light Transport Simulation Platform
下一代蒙特卡罗极限光传输仿真平台
- 批准号:
10701664 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Research Grant














{{item.name}}会员




