Site-1 protease-mediated lipid metabolism in lymphatic vascular development
位点 1 蛋白酶介导的淋巴血管发育中的脂质代谢
基本信息
- 批准号:10400114
- 负责人:
- 金额:$ 43.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismApoptosisBloodBlood VesselsCardinal veinCell membraneCellsCellular Metabolic ProcessCholesterolCholesterol HomeostasisComplementDataDefectDevelopmentDiabetes MellitusDietary FatsDorsalEmbryonic DevelopmentEndothelial CellsEndotheliumExhibitsFeedbackGenesGenetic TranscriptionGlutamineGlycolysisGolgi ApparatusHumanImmuneImpairmentInfectionInflammationIntercellular FluidKDR geneKnowledgeLeadLipidsLymphangiogenesisLymphaticLymphatic Endothelial CellsLymphatic EndotheliumLymphedemaMalignant NeoplasmsMediatingMembraneMetabolic PathwayMetabolismModelingMusMutant Strains MiceNamesNeoplasm MetastasisObesityOperative Surgical ProceduresPathologyPeptide HydrolasesPhenotypePhysiologicalPrimary Lymph SacProcessProliferatingReportingResearchRoleSRE-2 binding proteinSerine ProteaseSignal TransductionSiteSkinStructureTestingVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-3Vascular SystemWild Type Mouseabsorptionbasecell growthcholesterol biosynthesisdriving forceearly embryonic stageexperimental studyfatty acid oxidationimmune functionin vitro Assayin vivoinhibitorinsightknock-downlipid metabolismlymphatic developmentlymphatic vasculaturelymphatic vesselmigrationmouse developmentmutantnovelnovel therapeuticsrapid growthreceptorsite-1 proteasesubcutaneoustraffickingtranscription factortumor
项目摘要
The lymphatic vascular system is essential for transporting interstitial fluid, dietary fat, and immune cells. Defects
in these functions contribute to lymphedema, impaired lipid absorption, obesity, abnormal immune function, and
cancer metastasis. During embryonic development, lymphangiogenesis is robust, primarily driven by vascular
endothelial growth factor C (VEGF-C)-mediated activation of VEGFR-3, a main VEGF-C receptor on lymphatic
endothelial cells (LECs). Emerging evidence has shown the metabolism of endothelial cells is critical for vascular
development. Changes in EC metabolic pathways are found in pathologies such as cancer and diabetes as well. But
most research has been focused on blood endothelial metabolic pathways. Despite a few recent pioneering studies,
knowledge of LEC metabolism during lymphangiogenesis is limited. There is an unmet need to bridge the knowledge
gap between cellular metabolism and lymphatic vascular development. Site-1 protease (S1P), encoded by
membrane-bound transcription factor peptidase, site 1 (MBTPS1), is a serine protease in the Golgi apparatus. S1P is
a key regulator of cholesterol biosynthesis by proteolytic activation of a membrane-bound latent transcription factor,
sterol-regulatory element binding protein 2 (SREBP2). Recently, we found that mice with inducible endothelial cell-
specific deficiency of S1P (iEC Mbtps1-/-, Mbtps1f/f;;Cdh5CreERT2) exhibited severe subcutaneous lymphedema and
defective lymphatic vasculature during development. Our pilot experiments also showed that mice with LEC-specific
deficiency of SREBP2 (LEC Srebf2-/-, Srebf2f/f;;Lyve1Cre) had a similar lymphatic vascular defect during
development. These strong in vivo preliminary data support the central hypothesis that S1P/SREBP2-mediated
cholesterol biosynthesis is required for lymphatic vascular development.
We will test the central hypothesis through two Aims: 1) determine whether lymphatic endothelial S1P/SREBP2-
mediated cholesterol biosynthesis is required for lymphatic vascular development. We will characterize LEC cellular
defects, such as differentiation, migration, and proliferation, of S1P or SREBP2-deficient mice at different stages of
embryonic development. These in vivo analyses will be complemented by in vitro assays using LECs isolated from
wild-type (WT) or mutant mice as well as primary human LECs;; 2) determine mechanisms by which S1P/SREBP2-
mediated cholesterol biosynthesis regulate lymphangiogenesis. Based on our preliminary results, we will primarily
test the hypothesis S1P/SREBP2-mediated cholesterol biosynthesis is required for sustained VEGFR3 signaling
mainly by in vitro assays using WT or mutant LECs as well as human LECs with knockdown of S1P/SREBP2 or
functional inhibitors to S1P and SREBP2.
Based on strong preliminary data, our proposed study will reveal novel insights into roles of S1P-mediated lipid
metabolism in lymphatic vascular development. Our study may lead to novel therapeutic opportunities for
pathologies with lymphatic vascular defects.
淋巴血管系统对于运输间质液、膳食脂肪和免疫细胞至关重要。 缺陷
这些功能会导致淋巴水肿、脂质吸收受损、肥胖、免疫功能异常,以及
癌症转移。 在胚胎发育过程中,淋巴管生成非常旺盛,主要由血管驱动
内皮生长因子 C (VEGF-C) 介导的 VEGFR-3 激活,VEGFR-3 是淋巴管上的主要 VEGF-C 受体
内皮细胞(LEC)。 新的证据表明内皮细胞的代谢对于血管至关重要
发展。 EC 代谢途径的变化也存在于癌症和糖尿病等疾病中。 但
大多数研究都集中在血液内皮代谢途径。 尽管最近有一些开创性的研究,
对淋巴管生成过程中 LEC 代谢的了解有限。 桥梁知识的需求尚未得到满足
细胞代谢和淋巴血管发育之间的差距。 位点 1 蛋白酶 (S1P),编码为
膜结合转录因子肽酶位点 1 (MBTPS1) 是高尔基体中的一种丝氨酸蛋白酶。 S1P 是
通过膜结合潜在转录因子的蛋白水解激活来调节胆固醇生物合成,
甾醇调节元件结合蛋白 2 (SREBP2)。 最近,我们发现具有诱导性内皮细胞的小鼠
S1P(iEC Mbtps1-/-、Mbtps1f/f;;Cdh5CreERT2)的特定缺乏表现出严重的皮下淋巴水肿和
发育过程中淋巴管系统有缺陷。 我们的试点实验还表明,具有 LEC 特异性的小鼠
SREBP2 缺乏症(LEC Srebf2-/-、Srebf2f/f;;Lyve1Cre)在
发展。 这些强有力的体内初步数据支持 S1P/SREBP2 介导的中心假设
胆固醇生物合成是淋巴血管发育所必需的。
我们将通过两个目标检验中心假设:1) 确定淋巴内皮 S1P/SREBP2-
介导的胆固醇生物合成是淋巴血管发育所必需的。 我们将描述 LEC 蜂窝网络的特征
S1P 或 SREBP2 缺陷小鼠在不同阶段的缺陷,例如分化、迁移和增殖
胚胎发育。 这些体内分析将通过使用从
野生型 (WT) 或突变小鼠以及原代人类 LEC;;2) 确定 S1P/SREBP2- 的机制
介导的胆固醇生物合成调节淋巴管生成。 根据我们的初步结果,我们将主要
测试假设 S1P/SREBP2 介导的胆固醇生物合成对于持续的 VEGFR3 信号传导是必需的
主要通过使用 WT 或突变体 LEC 以及敲低 S1P/SREBP2 或的人类 LEC 进行体外测定
S1P 和 SREBP2 的功能性抑制剂。
基于强有力的初步数据,我们提出的研究将揭示对 S1P 介导的脂质作用的新见解
淋巴管发育中的新陈代谢。 我们的研究可能会带来新的治疗机会
伴有淋巴血管缺陷的病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijun Xia其他文献
Lijun Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijun Xia', 18)}}的其他基金
Center for Cellular Metabolism Research in Oklahoma
俄克拉荷马州细胞代谢研究中心
- 批准号:
10797920 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Center for Cellular Metabolism Research in Oklahoma
俄克拉荷马州细胞代谢研究中心
- 批准号:
10399960 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Center for Cellular Metabolism Research in Oklahoma
俄克拉荷马州细胞代谢研究中心
- 批准号:
10853688 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Center for Cellular Metabolism Research in Oklahoma
俄克拉荷马州细胞代谢研究中心
- 批准号:
10571889 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Center for Cellular Metabolism Research in Oklahoma
俄克拉荷马州细胞代谢研究中心
- 批准号:
10339346 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Center for Cellular Metabolism Research in Oklahoma
俄克拉荷马州细胞代谢研究中心
- 批准号:
10090975 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Site-1 protease-mediated lipid metabolism in lymphatic vascular development
位点 1 蛋白酶介导的淋巴管发育中的脂质代谢
- 批准号:
10629188 - 财政年份:2020
- 资助金额:
$ 43.7万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 43.7万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




