Protein Signatures of APOE2 and Cognitive Aging

APOE2 的蛋白质特征和认知衰老

基本信息

  • 批准号:
    10408304
  • 负责人:
  • 金额:
    $ 32.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Improving AI/ML readiness of data generated under the R01: Protein signatures of APOE2 and AG061844 “Protein signatures of APOE2 and cognitive aging”, we are generating proteomic and metabolomics data in a cohort of centenarians, their offspring, and unrelated controls from the New England Centenarian Study (NECS). Study participants have been characterized with detailed medical history, genetic profiles, and longitudinal assessment of physical and cognitive functions. The goal of the parent R01 is to validate a proteomic signature of APOE genotypes, and to evaluate its value together with metabolic profiles to predict patterns of cognitive function change in aging individuals. We plan to share data through the Alzheimer’s disease (AD) portal, and the new extreme longevity (EL) portal that is currently under development. Sharing the data in an unrestricted manner is not possible because they include HIPAA identifiers, particularly age >89. Unrestricted sharing of data would be an attractive option for AI/ML investigators, and the goal of this request for administrative supplement is to cognitive aging. Funded by the NIA: R01 use advanced machine learning techniques to generate high-fidelity, privacy-preserving, synthetic versions of the data obtained in the parent achine learning methods have emerged that can be used to generate synthetic data using a model that is trained in the real data. This model can be used to generate a synthetic data set in which no single data point corresponds to a real person in the original data set, but the synthetic data can be analyzed to produce results that are like those derived from the original data. This approach has received substantial attention in the past few years, and it has been adopted to compromise between data sharing and privacy, including generation of synthetic data for the National COVID Cohort Collaborative (N3C). We have put together a team of data scientists and partners from the company Syntegra R01 so they can be shared without restriction. M , to generate and validate a synthetic data set that matches the data generated with the parent R01. Our proposal is structured in three aims. In Aim 1, we will share with Syntegra real data from the NECS that include proteomics and metabolomics, genetic variables and patients’ characteristics including assessment of cognitive function. This real data will be used to train the data generation model and create synthetic data sets. In Aim 2 we will d evelop a protocol for validation of the synthetic data sets that includes fidelity to a variety of results of machine learning analyses and metrics to assess the deidentification of data. In Aim 3 we will conduct the analysis in the real and synthetic data sets and compare the results. Impact. This is a high risk, but potentially high return proposal. If the approach works, we will be able to generate data that can be widely shared with the community. The approach will also be applicable to several other studies of aging that struggle with the issues of data sharing to enhance scientific research while preserving privacy.
提高在R01下生成的数据的AI/ML准备性:APOE2和

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

THOMAS T PERLS其他文献

THOMAS T PERLS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('THOMAS T PERLS', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10276390
  • 财政年份:
    2021
  • 资助金额:
    $ 32.28万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10689331
  • 财政年份:
    2021
  • 资助金额:
    $ 32.28万
  • 项目类别:
Identifying protective omics profiles in centenarians and translating these into preventive and therapeutic strategies
确定百岁老人的保护性组学特征并将其转化为预防和治疗策略
  • 批准号:
    10017131
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
Identifying protective omics profiles in centenarians and translating these into preventive and therapeutic strategies
确定百岁老人的保护性组学特征并将其转化为预防和治疗策略
  • 批准号:
    10678171
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
Identifying protective omics profiles in centenarians and translating these into preventive and therapeutic strategies
确定百岁老人的保护性组学特征并将其转化为预防和治疗策略
  • 批准号:
    10449626
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
Phenotyping Core
表型核心
  • 批准号:
    10388280
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
Phenotyping Core
表型核心
  • 批准号:
    10616715
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
Protein Signatures of APOE2 and Cognitive Aging
APOE2 的蛋白质特征和认知衰老
  • 批准号:
    10451539
  • 财政年份:
    2018
  • 资助金额:
    $ 32.28万
  • 项目类别:
Protein Signatures of APOE2 and Cognitive Aging
APOE2 的蛋白质特征和认知衰老
  • 批准号:
    10219143
  • 财政年份:
    2018
  • 资助金额:
    $ 32.28万
  • 项目类别:
Characterizing Human Exceptional Longevity
人类超长寿命的特征
  • 批准号:
    7913647
  • 财政年份:
    2009
  • 资助金额:
    $ 32.28万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 32.28万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了