High Capacity, High Performance Storage System for Neuroscience
适用于神经科学的大容量、高性能存储系统
基本信息
- 批准号:10425960
- 负责人:
- 金额:$ 167.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-09-22
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAdoptionAlzheimer&aposs DiseaseAwarenessBiomedical ComputingBiomedical ResearchCaliforniaCollaborationsCommunitiesComputersCountryDataData CollectionData SetData Storage and RetrievalDevelopmentDisciplineDiseaseEquipmentFosteringFundingHealthInfrastructureInstitutionInterdisciplinary StudyIntervention TrialInvestigationLaboratoriesNeurosciencesParticipantPerformancePersonnel ManagementPlayProceduresProcessProductivityResearch PersonnelResolutionResourcesRoleSchizophreniaScientistSiteStagingSystemTechnologyTimeUniversitiescomputational neurosciencecomputer codedata acquisitiondata sharingexperienceinnovationinstrumentinstrumentationinterestlarge scale datamultidimensional datamultidisciplinaryneuroimagingnew technologynovelresidenceresponse
项目摘要
PROJECT SUMMARY/ABSTRACT
Contemporary neuroscience is experiencing, like many other disciplines, an ever increasing data demand due
to technological improvements in data acquisition, which continue to create data sets with higher and higher
resolution. Advancements in the acquisition of data have enabled novel interdisciplinary research efforts across
fields, but these advancements have also resulted in the need for more robust, network-aware, high-capacity
acquisition and data storage infrastructures. The Laboratory of Neuro Imaging (LONI) at the University of
Southern California (USC) has become an established frontrunner in the adoption of innovative, cutting-edge
technology to understand dynamic changes in health and disease. LONI’s collaborations have drastically
expanded over the years, and our laboratory plays a critical role in neuroscientific observational and
interventional trials and large-scale data collection efforts across institutions and countries. The increasing
availability of very high-resolution, time-varying, multidimensional data has challenged the computational
capabilities of ongoing projects in the field. To deal with large multidimensional datasets, the scientific community
requires computational systems capable of moving, storing, manipulating and rendering large volumes of data
in a practical manner. In response to these computational challenges, a group of neuro-, biomedical and
computer scientists with common interests and computational needs have come together to seek funding for the
requested instrumentation package, which will upgrade the storage infrastructure of our high performance
computational center (HPCC) resource, alleviating significant space constraints in all aspects of our
computational neuroscience investigations. The requested additional storage infrastructure will benefit many of
LONI’s collaborators both at USC and across the nation. The requested instrumentation will offer benefit to
collaborators given the: increase in storage capacity; co-localization of compute and storage; co-localization of
pre-processed and analyzed results and raw data; and staging for third party and cloud residence. An
administrative plan is already in place by which the equipment can be managed equitably. Technical and
management personnel also are part of the funded group of participants. Ongoing collaborations and the
common programmatic requirements will enable sharing of data, computer code, analytic procedures,
computational strategies and infrastructural capabilities. The requested instrument will enhance the productivity
of ongoing computational biomedical research at LONI and collaborating sites in schizophrenia, HIV/AIDS and
Alzheimer’s disease, among others, and foster the development of new technology and applications for a diverse
array of collaborators and multidisciplinary investigators.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARTHUR W TOGA其他文献
ARTHUR W TOGA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARTHUR W TOGA', 18)}}的其他基金
HABS-HD - Core B - Neuroimaging & Informatics Core
HABS-HD - 核心 B - 神经影像
- 批准号:
10493846 - 财政年份:2022
- 资助金额:
$ 167.36万 - 项目类别:
Training in the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer’s Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
- 批准号:
10628648 - 财政年份:2018
- 资助金额:
$ 167.36万 - 项目类别:
Training for the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer's Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
- 批准号:
10162462 - 财政年份:2018
- 资助金额:
$ 167.36万 - 项目类别:
Training for the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer's Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
- 批准号:
10436893 - 财政年份:2018
- 资助金额:
$ 167.36万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 167.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 167.36万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 167.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 167.36万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 167.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 167.36万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 167.36万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 167.36万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 167.36万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 167.36万 - 项目类别:
Standard Grant














{{item.name}}会员




