High Capacity, High Performance Storage System for Neuroscience

适用于神经科学的大容量、高性能存储系统

基本信息

  • 批准号:
    10425960
  • 负责人:
  • 金额:
    $ 167.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-23 至 2024-09-22
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Contemporary neuroscience is experiencing, like many other disciplines, an ever increasing data demand due to technological improvements in data acquisition, which continue to create data sets with higher and higher resolution. Advancements in the acquisition of data have enabled novel interdisciplinary research efforts across fields, but these advancements have also resulted in the need for more robust, network-aware, high-capacity acquisition and data storage infrastructures. The Laboratory of Neuro Imaging (LONI) at the University of Southern California (USC) has become an established frontrunner in the adoption of innovative, cutting-edge technology to understand dynamic changes in health and disease. LONI’s collaborations have drastically expanded over the years, and our laboratory plays a critical role in neuroscientific observational and interventional trials and large-scale data collection efforts across institutions and countries. The increasing availability of very high-resolution, time-varying, multidimensional data has challenged the computational capabilities of ongoing projects in the field. To deal with large multidimensional datasets, the scientific community requires computational systems capable of moving, storing, manipulating and rendering large volumes of data in a practical manner. In response to these computational challenges, a group of neuro-, biomedical and computer scientists with common interests and computational needs have come together to seek funding for the requested instrumentation package, which will upgrade the storage infrastructure of our high performance computational center (HPCC) resource, alleviating significant space constraints in all aspects of our computational neuroscience investigations. The requested additional storage infrastructure will benefit many of LONI’s collaborators both at USC and across the nation. The requested instrumentation will offer benefit to collaborators given the: increase in storage capacity; co-localization of compute and storage; co-localization of pre-processed and analyzed results and raw data; and staging for third party and cloud residence. An administrative plan is already in place by which the equipment can be managed equitably. Technical and management personnel also are part of the funded group of participants. Ongoing collaborations and the common programmatic requirements will enable sharing of data, computer code, analytic procedures, computational strategies and infrastructural capabilities. The requested instrument will enhance the productivity of ongoing computational biomedical research at LONI and collaborating sites in schizophrenia, HIV/AIDS and Alzheimer’s disease, among others, and foster the development of new technology and applications for a diverse array of collaborators and multidisciplinary investigators.
项目概要/摘要 与许多其他学科一样,当代神经科学正在经历不断增长的数据需求 数据采集​​技术的改进,不断创建越来越高的数据集 解决。数据获取的进步使得跨学科研究工作成为可能 领域,但这些进步也导致需要更强大的、网络感知的、高容量的 采集和数据存储基础设施。大学神经影像实验室 (LONI) 南加州 (USC) 已成为采用创新、尖端技术的领先者 技术来了解健康和疾病的动态变化。 LONI 的合作取得了巨大进展 多年来,我们的实验室不断扩大,在神经科学观察和 跨机构和国家的干预试验和大规模数据收集工作。不断增加的 高分辨率、时变、多维数据的可用性对计算能力提出了挑战 该领域正在进行的项目的能力。为了处理大型多维数据集,科学界 需要能够移动、存储、操作和渲染大量数据的计算系统 以实际的方式。为了应对这些计算挑战,一组神经、生物医学和 具有共同兴趣和计算需求的计算机科学家聚集在一起为该项目寻求资金 请求仪器包,这将升级我们的高性能存储基础设施 计算中心(HPCC)资源,减轻了我们各个方面的显着空间限制 计算神经科学研究。所要求的额外存储基础设施将使许多人受益 LONI 在南加州大学和全国各地的合作者。所需的仪器将为 合作者给予: 存储容量的增加;计算和存储的共本地化;共定位 预处理和分析的结果和原始数据;以及第三方和云住宅的分期。一个 行政计划已经到位,可以公平地管理设备。技术和 管理人员也是受资助的参与者群体的一部分。持续的合作和 共同的程序要求将实现数据、计算机代码、分析程序的共享, 计算策略和基础设施能力。所需的仪器将提高生产力 LONI 和精神分裂症、艾滋病毒/艾滋病和合作中心正在进行的计算生物医学研究 阿尔茨海默病等,并促进新技术和应用的开发,以适应多样化的需求 一系列合作者和多学科研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARTHUR W TOGA其他文献

ARTHUR W TOGA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARTHUR W TOGA', 18)}}的其他基金

HABS-HD - Core B - Neuroimaging & Informatics Core
HABS-HD - 核心 B - 神经影像
  • 批准号:
    10493846
  • 财政年份:
    2022
  • 资助金额:
    $ 167.36万
  • 项目类别:
Imaging Core
成像核心
  • 批准号:
    10247461
  • 财政年份:
    2020
  • 资助金额:
    $ 167.36万
  • 项目类别:
Data Management and Statistical Core (DMS)
数据管理和统计核心 (DMS)
  • 批准号:
    10655666
  • 财政年份:
    2020
  • 资助金额:
    $ 167.36万
  • 项目类别:
Data Management and Statistical Core (DMS)
数据管理和统计核心 (DMS)
  • 批准号:
    10247456
  • 财政年份:
    2020
  • 资助金额:
    $ 167.36万
  • 项目类别:
Data Management and Statistical Core (DMS)
数据管理和统计核心 (DMS)
  • 批准号:
    9922629
  • 财政年份:
    2020
  • 资助金额:
    $ 167.36万
  • 项目类别:
Imaging Core
成像核心
  • 批准号:
    10655670
  • 财政年份:
    2020
  • 资助金额:
    $ 167.36万
  • 项目类别:
Imaging Core
成像核心
  • 批准号:
    9922633
  • 财政年份:
    2020
  • 资助金额:
    $ 167.36万
  • 项目类别:
Training in the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer’s Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
  • 批准号:
    10628648
  • 财政年份:
    2018
  • 资助金额:
    $ 167.36万
  • 项目类别:
Training for the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer's Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
  • 批准号:
    10436893
  • 财政年份:
    2018
  • 资助金额:
    $ 167.36万
  • 项目类别:
Training for the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer's Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
  • 批准号:
    10162462
  • 财政年份:
    2018
  • 资助金额:
    $ 167.36万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 167.36万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 167.36万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 167.36万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 167.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了