A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
基本信息
- 批准号:10431227
- 负责人:
- 金额:$ 18.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiological AssayCAR T cell therapyCRISPR/Cas technologyCancer PatientCell physiologyChromosomal translocationClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexComputer AnalysisCustomDataDevelopmentEffectivenessEndoribonucleasesEngineeringEpigenetic ProcessFailureFutureGene LibraryGene TargetingGenesGeneticGenetic TranscriptionGuide RNAHematologic NeoplasmsHumanImmunotherapyImpairmentIn VitroIndividualKnock-outLightMapsMethodologyMethodsModelingOutcomePatientsPhenotypePost-Transcriptional RegulationPre-Clinical ModelProcessRNARNA InterferenceRelapseRepressionResistanceRiskSignal TransductionSolid NeoplasmSpecificitySystemT cell therapyT-LymphocyteTechnologyTranscriptUp-RegulationValidationVariantWorkbasecancer typechimeric antigen receptorchimeric antigen receptor T cellsclinical efficacycomputer frameworkcytokinecytotoxicitydesigneffector T cellengineered T cellsexhaustexhaustiongene repressiongenetic analysisgenome-widegenotoxicityimprovedknock-downmultimodalitynext generationnovelnovel strategiesprogrammed cell death protein 1programsscreeningsmall moleculesynthetic biologytranscriptometumor
项目摘要
ABSTRACT
Chimeric Antigen Receptor (CAR) T cell therapy has proven to be a breakthrough treatment with curative
potential in hematologic cancer patients as well as in aggressive preclinical models. However, recent studies
have shed light on major barriers to progress – many patients that initially respond completely to CAR T cell
therapy eventually relapse, and CAR T cells have demonstrated limited clinical efficacy in the treatment of solid
tumors. A key phenomenon that has been causally implicated in these failure modes is CAR T cell exhaustion,
where tonically-signaling CAR T cells are driven to a distinct and dysfunctional phenotype with restrained
antitumor activity. Previous genome-wide perturbation studies using CRISPR-Cas9 have identified a growing list
of single gene targets that, when knocked out, help mitigate exhaustion and modestly improve T cell function.
However, the resulting individual gene hits from these screens are often context-dependent and disparate across
different tumor and CAR models. Altogether, these studies indicate that the exhausted T cell phenotype is largely
driven by the upregulation of key gene programs rather than single genes, though the complex network of these
genetic interactions remains poorly defined.
To address these unmet needs, we propose a synthetic biology-driven approach using CRISPR-Cas13d
transcriptome engineering to develop potent, exhaustion-resistant CAR T cells. Cas13d is a small CRISPR RNA-
guided RNA endonuclease that can process a single guide RNA array to degrade multiple distinct target RNA
transcripts in a highly sequence-specific and robust manner. In AIM 1, we will develop a novel platform using
Cas13d to simultaneously downregulate multiple endogenous genes in primary human T cells, with a specific
focus on improving exhausted CAR T cell effector function. In AIM 2, we will use this technology to conduct a
double knockdown proliferation screen in exhausted CAR T cells targeting pairs of putative negative regulators
of T cell antitumor activity. We will utilize an established computational framework to identify highly enriched
gene pairings, to map genetic interactions (GI) between genes, and to define a network of exhaustion. We
hypothesize that our multimodal screening methodology can be used to identify new synergistic gene pairings
that outperform single knockdown phenotypes seen in prior studies.
Our proposed project will establish a new platform for multiplexed gene repression and screening in primary
human T cells that overcomes limitations faced by state-of-the-art CRISPR-Cas9 and RNAi technologies.
Furthermore, our studies will demonstrate a novel strategy to mitigate CAR T cell exhaustion, which will improve
upon current immune therapies and enhance their effectiveness. Ultimately, our work will address clinical unmet
needs as well as help the broader scientific community 1) better understand the complex network of T cell
exhaustion and 2) use this data to inform the development of next-generation CAR T cell therapies.
抽象的
嵌合抗原受体(CAR)T细胞疗法已被证明是治疗性的突破性治疗
血液学癌症患者以及侵略性临床前模型的潜力。但是,最近的研究
已经阐明了进步的主要障碍 - 许多最初对汽车T细胞完全反应的患者
治疗最终中继,CAR T细胞在固体治疗方面表现出有限的临床效率
肿瘤。在这些故障模式中随便涉及的一个关键现象是汽车T细胞耗尽,
固有信号的汽车T细胞被驱动到具有约束的独特且功能障碍的表型
抗肿瘤活性。以前使用CRISPR-CAS9的全基因组扰动研究已经确定了一个不断增长的列表
单个基因靶向,当被淘汰时,有助于减轻疲劳并适度改善T细胞功能。
但是,从这些筛选中产生的个体基因命中通常依赖于上下文
不同的肿瘤和汽车模型。总之,这些研究表明耗尽的T细胞表型在很大程度上是
由关键基因程序而不是单个基因的上调驱动,尽管这些基因的复杂网络
遗传相互作用的定义较差。
为了满足这些未满足的需求,我们建议使用CRISPR-CAS13D进行合成生物学驱动的方法
转录组工程以开发潜在的,耗尽的汽车T细胞。 CAS13D是一个小CRISPR RNA-
可以处理单个指南RNA阵列以降解多个不同靶RNA的引导RNA内切核酸酶
以高度序列特异性和鲁棒的方式进行转录本。在AIM 1中,我们将使用一个新颖的平台使用
CAS13D简单地下调原代人T细胞中的多个内源基因,具体
专注于改善耗尽的CAR T细胞效应器功能。在AIM 2中,我们将使用这项技术进行
耗尽的汽车T细胞中的双重敲低增殖屏幕瞄准了推定的负调节器
T细胞抗肿瘤活性。我们将利用既定的计算框架来识别高度丰富的
基因配对,以绘制基因之间的遗传相互作用(GI),并定义疲惫网络。我们
假设我们的多模式筛选方法可用于识别新的协同基因配对
在先前的研究中,这种表现优于单一敲低表型。
我们提出的项目将建立一个新的平台,用于多路复用基因表达和筛选。
由最先进的CRISPR-CAS9和RNAi技术所面临的限制的人类T细胞。
此外,我们的研究将证明一种减轻汽车T细胞耗尽的新型策略,这将改善
在当前的免疫疗法并增强其有效性。最终,我们的工作将无法解决临床
需求以及帮助更广泛的科学界1)更好地了解T细胞的复杂网络
疲惫和2)使用此数据来告知下一代CAR T细胞疗法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Stanley Qi其他文献
Lei Stanley Qi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Stanley Qi', 18)}}的其他基金
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 18.29万 - 项目类别:
Manipulating and Interrogating Spatial Transcriptomics
操纵和询问空间转录组学
- 批准号:
10702050 - 财政年份:2023
- 资助金额:
$ 18.29万 - 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
- 批准号:
10571868 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10522013 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
- 批准号:
10593233 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10671756 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
Examining COVID-19 in Down Syndrome Patients Using Human iPSC-Derived Organoids
使用人类 iPSC 衍生的类器官检查唐氏综合症患者的 COVID-19
- 批准号:
10241207 - 财政年份:2021
- 资助金额:
$ 18.29万 - 项目类别:
Modeling Tyrosine Kinase Inhibitor-Induced Vascular Dysfunction Using Human iPSCs
使用人 iPSC 模拟酪氨酸激酶抑制剂诱导的血管功能障碍
- 批准号:
10518663 - 财政年份:2018
- 资助金额:
$ 18.29万 - 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in DCM - Diversity Supplement
人类 iPSC 用于阐明 DCM 中的细胞间串扰信号传导 - 多样性补充
- 批准号:
10730997 - 财政年份:2018
- 资助金额:
$ 18.29万 - 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in Dilated Cardiomyopathy
人类 iPSC 用于阐明扩张型心肌病中的细胞间串扰信号传导
- 批准号:
10852761 - 财政年份:2018
- 资助金额:
$ 18.29万 - 项目类别:
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 18.29万 - 项目类别:
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 18.29万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 18.29万 - 项目类别: