A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells

基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞

基本信息

  • 批准号:
    10571868
  • 负责人:
  • 金额:
    $ 21.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

ABSTRACT Chimeric Antigen Receptor (CAR) T cell therapy has proven to be a breakthrough treatment with curative potential in hematologic cancer patients as well as in aggressive preclinical models. However, recent studies have shed light on major barriers to progress – many patients that initially respond completely to CAR T cell therapy eventually relapse, and CAR T cells have demonstrated limited clinical efficacy in the treatment of solid tumors. A key phenomenon that has been causally implicated in these failure modes is CAR T cell exhaustion, where tonically-signaling CAR T cells are driven to a distinct and dysfunctional phenotype with restrained antitumor activity. Previous genome-wide perturbation studies using CRISPR-Cas9 have identified a growing list of single gene targets that, when knocked out, help mitigate exhaustion and modestly improve T cell function. However, the resulting individual gene hits from these screens are often context-dependent and disparate across different tumor and CAR models. Altogether, these studies indicate that the exhausted T cell phenotype is largely driven by the upregulation of key gene programs rather than single genes, though the complex network of these genetic interactions remains poorly defined. To address these unmet needs, we propose a synthetic biology-driven approach using CRISPR-Cas13d transcriptome engineering to develop potent, exhaustion-resistant CAR T cells. Cas13d is a small CRISPR RNA- guided RNA endonuclease that can process a single guide RNA array to degrade multiple distinct target RNA transcripts in a highly sequence-specific and robust manner. In AIM 1, we will develop a novel platform using Cas13d to simultaneously downregulate multiple endogenous genes in primary human T cells, with a specific focus on improving exhausted CAR T cell effector function. In AIM 2, we will use this technology to conduct a double knockdown proliferation screen in exhausted CAR T cells targeting pairs of putative negative regulators of T cell antitumor activity. We will utilize an established computational framework to identify highly enriched gene pairings, to map genetic interactions (GI) between genes, and to define a network of exhaustion. We hypothesize that our multimodal screening methodology can be used to identify new synergistic gene pairings that outperform single knockdown phenotypes seen in prior studies. Our proposed project will establish a new platform for multiplexed gene repression and screening in primary human T cells that overcomes limitations faced by state-of-the-art CRISPR-Cas9 and RNAi technologies. Furthermore, our studies will demonstrate a novel strategy to mitigate CAR T cell exhaustion, which will improve upon current immune therapies and enhance their effectiveness. Ultimately, our work will address clinical unmet needs as well as help the broader scientific community 1) better understand the complex network of T cell exhaustion and 2) use this data to inform the development of next-generation CAR T cell therapies.
摘要 嵌合抗原受体(CAR)T细胞疗法已被证明是具有治愈性的突破性治疗。 在血液癌症患者以及侵袭性临床前模型中的潜力。但最近的研究 已经揭示了进展的主要障碍-许多患者最初对CAR T细胞完全反应, 治疗最终复发,并且CAR T细胞在治疗实体瘤中表现出有限的临床疗效。 肿瘤的与这些失效模式有因果关系的一个关键现象是CAR T细胞耗竭, 其中紧张性信号传导CAR T细胞被驱动为具有受限制的功能障碍的独特表型, 抗肿瘤活性。之前使用CRISPR-Cas9的全基因组扰动研究已经确定了一个不断增长的列表 单基因靶点,当敲除时,有助于减轻疲惫并适度改善T细胞功能。 然而,从这些筛选中得到的单个基因命中通常是依赖于上下文的,并且在不同的基因组中是不同的。 不同的肿瘤和CAR模型。总之,这些研究表明,耗尽的T细胞表型在很大程度上是 由关键基因程序而不是单个基因的上调驱动,尽管这些基因的复杂网络 基因间的相互作用仍不明确。 为了解决这些未满足的需求,我们提出了一种使用CRISPR-Cas 13 d的合成生物学驱动的方法。 转录组工程以开发有效的耐耗竭CAR T细胞。Cas 13 d是一种小CRISPR RNA。 引导RNA核酸内切酶,其可以处理单个引导RNA阵列以降解多个不同的靶RNA 以高度序列特异性和稳健的方式转录。在AIM 1中,我们将使用 Cas 13 d同时下调原代人T细胞中的多种内源性基因,具有特异性的 专注于改善耗尽的CAR T细胞效应子功能。在AIM 2中,我们将使用该技术进行 在靶向假定的负调节物对的耗尽的CAR T细胞中进行双敲低增殖筛选 T细胞的抗肿瘤活性。我们将利用一个已建立的计算框架来识别高度富集的 基因配对,绘制基因之间的遗传相互作用(GI),并定义一个耗尽网络。我们 假设我们的多模式筛选方法可用于鉴定新的协同基因配对 其表现优于先前研究中所见的单一敲除表型。 我们的项目将建立一个新的平台,在初级阶段进行多重基因抑制和筛选。 人类T细胞,克服了最先进的CRISPR-Cas9和RNAi技术所面临的限制。 此外,我们的研究将证明一种减轻CAR T细胞耗竭的新策略, 并增强其有效性。最终,我们的工作将解决临床未满足的 需要以及帮助更广泛的科学界1)更好地了解T细胞的复杂网络 2)使用这些数据为下一代CAR T细胞疗法的开发提供信息。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advances in CRISPR therapeutics.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Stanley Qi其他文献

Lei Stanley Qi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Stanley Qi', 18)}}的其他基金

Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 21.61万
  • 项目类别:
Manipulating and Interrogating Spatial Transcriptomics
操纵和询问空间转录组学
  • 批准号:
    10702050
  • 财政年份:
    2023
  • 资助金额:
    $ 21.61万
  • 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
  • 批准号:
    10431227
  • 财政年份:
    2022
  • 资助金额:
    $ 21.61万
  • 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
  • 批准号:
    10522013
  • 财政年份:
    2022
  • 资助金额:
    $ 21.61万
  • 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
  • 批准号:
    10593233
  • 财政年份:
    2022
  • 资助金额:
    $ 21.61万
  • 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
  • 批准号:
    10671756
  • 财政年份:
    2022
  • 资助金额:
    $ 21.61万
  • 项目类别:
Examining COVID-19 in Down Syndrome Patients Using Human iPSC-Derived Organoids
使用人类 iPSC 衍生的类器官检查唐氏综合症患者的 COVID-19
  • 批准号:
    10241207
  • 财政年份:
    2021
  • 资助金额:
    $ 21.61万
  • 项目类别:
Modeling Tyrosine Kinase Inhibitor-Induced Vascular Dysfunction Using Human iPSCs
使用人 iPSC 模拟酪氨酸激酶抑制剂诱导的血管功能障碍
  • 批准号:
    10518663
  • 财政年份:
    2018
  • 资助金额:
    $ 21.61万
  • 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in DCM - Diversity Supplement
人类 iPSC 用于阐明 DCM 中的细胞间串扰信号传导 - 多样性补充
  • 批准号:
    10730997
  • 财政年份:
    2018
  • 资助金额:
    $ 21.61万
  • 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in Dilated Cardiomyopathy
人类 iPSC 用于阐明扩张型心肌病中的细胞间串扰信号传导
  • 批准号:
    10852761
  • 财政年份:
    2018
  • 资助金额:
    $ 21.61万
  • 项目类别:

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
  • 批准号:
    EP/Z532538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了