Manipulating and Interrogating Spatial Transcriptomics
操纵和询问空间转录组学
基本信息
- 批准号:10702050
- 负责人:
- 金额:$ 108.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Amyotrophic Lateral SclerosisAtlasesAxonBiologyCell physiologyCellsClustered Regularly Interspaced Short Palindromic RepeatsComputer AnalysisDevelopmentDiseaseEmbryoFluorescent in Situ HybridizationFoundationsFragile X SyndromeGoalsImageIn SituIn VitroMediatingMessenger RNAMethodsMonitorNeuronsPathologicPathologyPhysiologicalPlayProtein BiosynthesisRNARNA-Binding ProteinsRegulationResolutionRoleSiteSpinal Muscular AtrophySynapsesTechnologyTherapeuticTimeTranscriptUntranslated RNAaxon guidancecell typedeep learningin vivoinsightmachine learning algorithmnervous system disordernovel strategiessingle moleculespatiotemporaltranscriptomics
项目摘要
ABSTRACT
Spatial mRNA organization plays a fundamental role in diverse cellular processes and disease. In large,
compartmentalized cells (e.g., neurons and embryos), subcellular mRNA localization offers a core mechanism
for the spatiotemporal regulation of protein synthesis. Since the initial discovery of subcellular mRNA distribution
in 1983, high-throughput imaging and sequencing methods have revealed that, in many cell types, thousands of
RNAs are localized to distinct compartments. For example, many axonal-related mRNAs in neurons will transport
to the “site of needed” along the very long (>100μm) axon, which likely play an important role in axon
development and local synaptic activities. Furthermore, mounting evidence shows a correlation between
aberrant spatial RNA organization and an increasing number of diseases, including amyotrophic lateral sclerosis
(ALS), fragile X syndrome (FXS), and spinal muscular atrophy (SMA). However, due to a lack of technologies
that allow for the tracking and manipulation of the spatial localization of endogenous mRNAs in primary cells and
in vivo, the mechanism and functional relevance of spatial organization has only been explored for a small
number of mRNAs. In this proposal, we seek to establish a set of technologies as a new foundation to study
spatial RNA biology, by developing an integrated framework that allows for sophisticated computational analysis,
real-time RNA tracking, and programmable spatial manipulation of any endogenous mRNA(s) in situ and in vivo,
on a high-throughput (>1,000 mRNAs in parallel) scale. To achieve this goal, we will start by building a deep
learning framework that can analyze spatially localized RNAs in different cell types and predict their associated
regulatory factors (e.g., RNA motifs, RNA binding proteins). This will provide an atlas of spatial RNA organization
as well as candidate RNAs for functional studies. Next, we will develop two novel approaches, RNA live-cell
fluorescent in situ hybridization (RNA-LiveFISH) for single-molecule, real-time dynamic tracking, and CRISPR-
mediated transcript organization (CRISPR-TO) for programmable manipulation of any target mRNA localization.
The two approaches form a new framework that enables us to study the regulatory mechanism and functional
relevance of subcellular mRNA localization with unprecedented ease and spatiotemporal resolution. Third, we
seek to apply this framework to study the function of mRNA localization in primary neurons, via high-throughput
manipulation of >1,000 mRNAs to uncover functions for axon guidance, growth cone development, and synaptic
activities. Selected functional mRNAs (>100) will be verified in vivo. Finally, we will apply the framework to
investigate the pathological mechanisms of aberrant RNA localization underlying the neurological disease spinal
muscular atrophy (SMA) in vitro and in vivo. We will not only dissect the relationship between mRNA organization
and SMA pathology, but also explore the strategy of modulating RNA localization for potential therapeutics. We
envision that the proposal will lead to new groundbreaking insights into the mechanism and functional roles of
whole-cell mRNA spatial organization for cellular and physiological functions that has not been revealed before.
摘要
空间mRNA组织在不同的细胞过程和疾病中起着重要作用。总的来说,
区室化细胞(例如,神经元和胚胎),亚细胞mRNA定位提供了核心机制
蛋白质合成的时空调控。自从最初发现亚细胞mRNA分布以来,
1983年,高通量成像和测序方法已经揭示,在许多细胞类型中,
RNA定位于不同的区室。例如,神经元中的许多轴突相关mRNA将转运
沿着沿着长(>100μm)的轴突到达“需要的部位”,这可能在轴突中起重要作用
发育和局部突触活动。此外,越来越多的证据表明,
异常的空间RNA组织和越来越多的疾病,包括肌萎缩性侧索硬化症
(ALS)脆性X综合征(FXS)和脊髓性肌萎缩症(SMA)。然而,由于缺乏技术,
其允许追踪和操纵内源性mRNA在原代细胞中的空间定位,
在体内,空间组织的机制和功能相关性只被探索了一小部分,
mRNA的数量。在这个建议中,我们寻求建立一套技术作为研究的新基础
空间RNA生物学,通过开发一个允许复杂计算分析的集成框架,
实时RNA跟踪,以及原位和体内任何内源性mRNA的可编程空间操作,
在高通量(> 1,000个mRNA平行)规模上。为了实现这一目标,我们将从建立一个深入的
学习框架,可以分析不同细胞类型中的空间定位RNA,并预测其相关的
调节因素(例如,RNA基序、RNA结合蛋白)。这将提供一个空间RNA组织图谱
以及用于功能研究的候选RNA。接下来,我们将开发两种新的方法,RNA活细胞
荧光原位杂交(RNA-LiveFISH)用于单分子、实时动态跟踪和CRISPR-
介导的转录本组织(CRISPR-TO),用于任何靶mRNA定位的可编程操作。
这两种方法形成了一个新的框架,使我们能够研究调控机制和功能
亚细胞mRNA定位的相关性与前所未有的轻松和时空分辨率。三是
试图应用这一框架,通过高通量研究mRNA在原代神经元中的定位功能
操纵> 1,000个mRNA,以揭示轴突导向、生长锥发育和突触形成的功能。
活动将在体内验证选定的功能性mRNA(>100)。最后,我们将把这个框架应用于
探讨神经系统疾病脊髓RNA定位异常的病理机制
肌肉萎缩症(SMA)的体外和体内研究。我们不仅要剖析mRNA组织与
和SMA病理学,而且还探索用于潜在治疗的调节RNA定位的策略。我们
设想该提案将导致新的突破性见解的机制和功能作用,
全细胞mRNA的空间组织的细胞和生理功能,还没有被揭示之前。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Stanley Qi其他文献
Lei Stanley Qi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Stanley Qi', 18)}}的其他基金
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 108.08万 - 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
- 批准号:
10431227 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
- 批准号:
10571868 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10522013 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
- 批准号:
10593233 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10671756 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Examining COVID-19 in Down Syndrome Patients Using Human iPSC-Derived Organoids
使用人类 iPSC 衍生的类器官检查唐氏综合症患者的 COVID-19
- 批准号:
10241207 - 财政年份:2021
- 资助金额:
$ 108.08万 - 项目类别:
Modeling Tyrosine Kinase Inhibitor-Induced Vascular Dysfunction Using Human iPSCs
使用人 iPSC 模拟酪氨酸激酶抑制剂诱导的血管功能障碍
- 批准号:
10518663 - 财政年份:2018
- 资助金额:
$ 108.08万 - 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in DCM - Diversity Supplement
人类 iPSC 用于阐明 DCM 中的细胞间串扰信号传导 - 多样性补充
- 批准号:
10730997 - 财政年份:2018
- 资助金额:
$ 108.08万 - 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in Dilated Cardiomyopathy
人类 iPSC 用于阐明扩张型心肌病中的细胞间串扰信号传导
- 批准号:
10852761 - 财政年份:2018
- 资助金额:
$ 108.08万 - 项目类别:
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 108.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 108.08万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 108.08万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 108.08万 - 项目类别:














{{item.name}}会员




