Preventing medication dispensing errors in pharmacy practice with interpretable machine intelligence
利用可解释的机器智能防止药房实践中的配药错误
基本信息
- 批准号:10434056
- 负责人:
- 金额:$ 28.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Artificial IntelligenceCardiovascular DiseasesCause of DeathClassificationClinicalCognitiveDangerousnessDataDecision MakingDetectionDevelopmentEmergency department visitEvaluationGoalsHealthcareHealthcare SystemsHospitalizationHumanImageKnowledgeLabelLeadLegalLifeMalignant NeoplasmsMeasuresMedical ErrorsMedication ErrorsMethodsModelingOutpatientsOutputPatient-Focused OutcomesPatientsPerformance at workPersonsPharmaceutical PreparationsPharmacistsPharmacy facilityProcessProviderResearchStreamSystemTestingTimeTranslatingTrustUncertaintyUnited StatesVial deviceWorkbasecare costscostdeep learningdesignexperienceexperimental studyimprovedinsightmedical appointmentpatient safetypreventsoundsupport toolstoolvisual tracking
项目摘要
PROJECT SUMMARY
Medical errors are the 3rd leading cause of death in the United States behind cancer and cardiovascular
disease. The largest proportion of medical errors involve medications. Medication errors result in 3 million
outpatient medical appointments, 1 million emergency department visits, and 125,000 hospital admissions
each year. Astoundingly, over 4 billion prescriptions are dispensed every year in the United States alone.
Although dispensing error rates are generally low at 0.06%, the sheer volume of dispensed medications
translates to 2.4 million incorrectly dispensed medications each year. In the pharmacy, dispensing errors arise
when pharmacists do not detect that the medication filled inside a prescription vial is different from the
medication ordered on the prescription's label. These dispensing errors can result in patient harm, added strain
on the healthcare system, and costly legal action against the pharmacy.
Machine intelligence (MI) can be employed to assist in the verification process to help avoid dangerous and
costly pharmacy dispensing errors.4–6 However for the human-MI partnership to function optimally, the MI
should be capable of conveying accurate information that encourages providers to make sound cognitive
decisions such that optimal trust is maintained, and temporal and cognitive demand is reduced. Imperative to
this goal is to design MI from which interpretable information can be extracted, convey this information in an
effective manner and calibrate user's trust in MI as either over-trust or under-trust can lead to near miss and
incident errors.
This proposed project will further our knowledge for designing interpretable MI outputs and inform the
development of MI models that encourage pharmacy staff to make sound clinical decisions that lead to better
patient outcomes while improving work-life at lower costs of care. This study develops interpretable MI
methods in the context of medication images classification and designs effective MI advice and reasoning that
lead to lower cognitive demand and increased trust in the MI. Our hypothesis is that interpretable MI will lead to
improved work performance and more calibrated trust compared to uninterpretable M. The objectives of this
proposal are to: 1) design interpretable machine intelligence to double-check dispensed medication images in
real-time; 2) evaluate changes in pharmacy staff trust due to the long-term use of interpretable machine
intelligence; and 3) determine the effect of interpretable machine intelligence on long-term pharmacy staff work
performance.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raed Al Kontar其他文献
Raed Al Kontar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raed Al Kontar', 18)}}的其他基金
Preventing medication dispensing errors in pharmacy practice with interpretable machine intelligence
利用可解释的机器智能防止药房实践中的配药错误
- 批准号:
10594578 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Preventing medication dispensing errors in pharmacy practice with interpretable machine intelligence
利用可解释的机器智能防止药房实践中的配药错误
- 批准号:
10183536 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
相似海外基金
In-Vitro evaluation of the effectiveness of a novel Dual Drug Coated Balloon catheter to treat Vascular and cardiovascular diseases
新型双药物涂层球囊导管治疗血管和心血管疾病有效性的体外评估
- 批准号:
10109618 - 财政年份:2024
- 资助金额:
$ 28.88万 - 项目类别:
Launchpad
Research on the significance of sleep interventions for prevention of cardiovascular diseases in the elderly and middle-aged population
睡眠干预对中老年心血管疾病预防的意义研究
- 批准号:
23K09723 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach
使用个性化预测医学方法对心血管疾病临床结果的潜在改善进行计算模拟
- 批准号:
10580116 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Risk prediction of atrial fibrillation, cardiovascular diseases, and dementia using electrocardiogram findings: the Hisayama Study
利用心电图结果预测心房颤动、心血管疾病和痴呆症的风险:久山研究
- 批准号:
23K09692 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarifying the mechanisms of atherosclerotic cardiovascular diseases via genome and single cell integrated omics analyses.
通过基因组和单细胞整合组学分析阐明动脉粥样硬化性心血管疾病的机制。
- 批准号:
23H02905 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Patient-Oriented Research in Global Cardiovascular Diseases and Interactions with HIV
全球心血管疾病及其与艾滋病毒相互作用的以患者为导向的研究
- 批准号:
10762609 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
US Ten Day Seminar on the Epidemiology and Prevention of Cardiovascular Diseases and Stroke
美国心血管疾病及中风流行病学及预防十天研讨会
- 批准号:
10754206 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Addressing Rural Disparities in Food and Nutrition Security and Cardiovascular Diseases Through Access to Emergency Food for Older Adults
通过为老年人提供紧急食品来解决农村地区粮食和营养安全以及心血管疾病方面的差异
- 批准号:
10721118 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Correlationship between oral bacteria and cardiovascular diseases
口腔细菌与心血管疾病的相关性
- 批准号:
22K10340 - 财政年份:2022
- 资助金额:
$ 28.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Worsening of chronic condition during COVID-19 pandemic and association of occupational factors with the incidence of cardiovascular diseases in workers with chronic condition
COVID-19 大流行期间慢性病恶化以及职业因素与慢性病工人心血管疾病发病率的关系
- 批准号:
22H03349 - 财政年份:2022
- 资助金额:
$ 28.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




