Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
基本信息
- 批准号:10436262
- 负责人:
- 金额:$ 113.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAgingAlgorithmsAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAmericanAreaBackBioinformaticsBiologyBrain imagingCaregiversClinical ResearchCollaborationsCommunitiesComputer softwareDataDementiaElderlyFunctional disorderGenesGeneticGenetic studyHealthcareHeartHeritabilityImageImpaired cognitionInvestigationLabelMachine LearningMapsMemoryMendelian randomizationMethodsModelingMolecularMolecular EpidemiologyNeurodegenerative DisordersParticipantPatientsPatternPhenotypePrevention strategyPublic HealthResearchResearch PersonnelResourcesSamplingSource CodeStructureSupervisionTestingTimeTrainingVisualizationaging brainbasebiobankbioinformatics toolbiomedical imagingcognitive functioncohortconnectomedata analysis pipelinedata resourcedata standardsdeep learningdisorder riskendophenotypegenetic architecturegenome wide association studygenome-widegenomic epidemiologygenomic locusgraph neural networkhigh dimensionalityhuman old age (65+)imaging informaticsimaging modalityinterestlearning strategyloss of functionmultidisciplinarymultimodal neuroimagingneuroimagingnovelradiologisttherapeutic developmenttraitvectorwhole genome
项目摘要
Alzheimer's disease (AD) is characterized by the progressive impairment of cognitive and
memory functions and is the most common form of dementia in the elderly. It affects 5.6 million
Americans over the age of 65 and exacts tremendous and increasing demands on patients,
caregivers, and healthcare resources, making this condition among the most significant public
health problems of our time. Despite extensive studies, our understanding of the biology and
pathophysiology of AD is still limited, hindering advances in the development of therapeutic and
preventive strategies. Genetic studies of AD have successfully identified 40 novel loci but these
explain only a fraction of the overall disease risk, suggesting opportunities for additional
discoveries. Advanced neuroimaging is an essential part of current AD clinical and research
investigations, which generally focus on relatively few imaging phenotypes developed by neuro-
radiologists. However, there is a growing interest in exploiting the high-content information in
large-scale, high dimensional multimodal neuroimaging data to identify novel AD biomarkers.
Deep learning (DL) methods, an emerging area of machine learning research, uses raw images
to derive optimal vector representations of imaging contents, which can be used as informative
AD endophenotypes. To overcome the low interpretability traditionally attributed to DL, whole
genome sequence data provide an opportunity to identify novel genes underlying the DL-
derived imaging endophenotypes and test their association with AD and AD-related traits in
large cohort samples. The proposed project will leverage existing neuroimaging and genetic
data resources from the UK Biobank, the Alzheimer's Disease Sequencing Project (ADSP), the
Alzheimer's Disease Neuroimaging Initiative (ADNI), and the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium, and will be conducted by a
multidisciplinary team of investigators. We will derive AD endophenotypes from neuroimaging
data in the UK Biobank using deep learning (DL). We will identify novel genetic loci associated
with DL-derived imaging endophenotypes and optimize the co-heritability of these
endophenotypes with AD-related phenotypes using UK Biobank genetic data. We will leverage
resources and collaborations with AD Consortia and the power of DL-derived neuroimaging
endophenotypes to identify novel genes for Alzheimer's Disease and AD-related traits. Also, we
will develop DL-based neuroimaging harmonization and imputation methods and distribute
implementation software to the research community. We expect to discover new genes relevant
to AD which may leads to understanding of molecular basis of AD and potential new treatment.
阿尔茨海默氏病(AD)的特征是认知和
记忆功能,是老年痴呆症最常见的形式。它影响560万
65岁以上的美国人,对患者的巨大和需求越来越大,
护理人员和医疗保健资源使这种情况成为最重要的公众
我们这个时代的健康问题。尽管进行了广泛的研究,我们对生物学和
AD的病理生理学仍然有限,阻碍了治疗性发展的进步
预防策略。 AD的遗传研究成功鉴定了40个新的基因座,但是这些
仅解释总体疾病风险的一小部分,这表明机会额外
发现。高级神经影像学是当前AD临床和研究的重要组成部分
研究通常集中于相对较少的成像表型,由神经 -
放射科医生。但是,对利用高含量信息的兴趣越来越
大规模的高维多模式神经影像学数据,以识别新型的AD生物标志物。
深度学习方法(DL)方法是机器学习研究的新兴领域,使用原始图像
得出成像内容的最佳矢量表示,可以用作信息丰富
广告内型。为了克服传统上归因于DL的低解释性
基因组序列数据提供了一个机会,可以鉴定DL-的基因的新基因
衍生成像内表型并测试其与AD和与AD相关性状的关联
大型队列样品。拟议的项目将利用现有的神经影像和遗传
来自英国生物银行的数据资源,阿尔茨海默氏病测序项目(ADSP),
阿尔茨海默氏病神经影像学倡议(ADNI)和心脏和衰老的同龄人
基因组流行病学(电荷)联盟的研究,将由A进行
调查人员的多学科团队。我们将从神经影像中得出广告型内表型
英国生物库的数据使用深度学习(DL)。我们将确定新颖的遗传基因座相关
使用DL衍生的成像内表型并优化了这些的共同性
使用UK Biobank遗传数据具有与广告相关表型的内型型。我们将利用
与广告联盟的资源和合作以及DL衍生的神经影像的力量
内表型鉴定阿尔茨海默氏病和广告相关性状的新型基因。另外,我们
将开发基于DL的神经影像学协调和插补方法并分发
向研究社区实施软件。我们希望发现新基因相关
可能导致对AD分子基础和潜在新处理的AD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MYRIAM FORNAGE其他文献
MYRIAM FORNAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MYRIAM FORNAGE', 18)}}的其他基金
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10369339 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10653800 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10675679 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
- 批准号:
10827718 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10611823 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
- 批准号:
10599738 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10212068 - 财政年份:2021
- 资助金额:
$ 113.05万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9792270 - 财政年份:2016
- 资助金额:
$ 113.05万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9272153 - 财政年份:2016
- 资助金额:
$ 113.05万 - 项目类别:
ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems
通过内表型、组学对多种族队列进行 ADSP 随访
- 批准号:
9078875 - 财政年份:2016
- 资助金额:
$ 113.05万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 113.05万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 113.05万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 113.05万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 113.05万 - 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 113.05万 - 项目类别: