Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
基本信息
- 批准号:10653800
- 负责人:
- 金额:$ 37.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdministrative SupplementAffectAgingAlzheimer&aposs DiseaseAmericanArtificial IntelligenceAttentionAwardBrainCaregiversDataData ReportingDependenceEvaluationGenesGeneticGenetic DatabasesGenetic ProcessesGenomeGoalsHeritabilityImageImage AnalysisLearningLightLiteratureMagnetic Resonance ImagingMapsMethodsModalityNeurodegenerative DisordersPainParentsPartner in relationshipPatientsPerformanceProcessResearchResolutionSchemeSocietiesStructurebasebrain magnetic resonance imagingcostdeep learningdeep neural networkdesignendophenotypegene discoverygenetic informationgenome wide association studyhigh dimensionalityimaging geneticslearning strategymachine learning methodneuroimagingnovelparent project
项目摘要
Project Summary/Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease affecting aging Americans and generates dra-
matic costs and pains on patients, caregivers, and the society. This administrative supplement proposes to develop
new deep learning methods that integrate neuroimaging data with genetic information, thereby generating enriched
gene-related data representations. There are at least three challenges to accomplish this research objective. Firstly,
commonly used image encoders employ deep neural networks to extract high-level features for downstream tasks,
but gene-related information can be contained in features at different levels and resolutions in deep neural networks.
Secondly, using deep learning to process genetic data has been largely unexplored in literature. It is hard to design
an effective encoder to tackle high-dimensional and discrete genetic data based on deep learning methods. Thirdly,
there lacks a principled contrastive learning framework to learn from both imaging and genetic data for GWAS pur-
poses. In this administrative supplement, we propose a novel trans-modality contrastive learning framework (TM-CL)
to address these limitations and then faithfully accomplish our research goal. Our TM-CL contains novel and spe-
cially designed imaging and genetic encoders to process brain MRI data and high-dimensional genetic data as well
as a novel contrastive learning scheme to learn enriched gene-related information to benefit downstream tasks such
as GWAS. Specifically, TM-CL contains a uniquely designed MRI encoder to integrate features at different scales
and resolutions. In addition, our MRI encoder contains an attention-based multi-scale global transformation to extract
global information from MRI data. Overall, gene-related information contained in MRI data can be largely captured
in the representations. We also design a transformer-based genetic encoder for computing genetic representations. As
genetic data is high-dimensional and discrete, it is hard to design deep learning based encoders to process such data.
Our genetic encoder is proposed based on swin-transformer, where window attention and shifted window attention are
designed to perform attention within splitting windows. By doing this, our genetic encoder can aggregate sufficient
gene-related information, while largely reducing the computing cost. More importantly, when performing attention
in our genetic encoder, the computed attention scores can capture three types of dependencies among different SNPs,
As a result, the complicated genetic dependencies of the input genome data can be effectively captured. Finally, we
propose a novel trans-modality contrastive learning scheme for integrating imaging data and genetics. Based on the
proposed MRI and genetic encoders, we perform mutual information maximization between the MRI representation
and genetic representation as the learning objective. Our contrastive framework is able to generate more informa-
tive and discriminate gene-related representations, boosting the performance of downstream tasks such as GWAS.
By faithfully accomplishing these research goals, we expect to facilitate the discovery of new genes relevant to AD,
thereby shedding light on the causes and cures of AD.
项目总结/摘要
阿尔茨海默病(AD)是一种严重的神经退行性疾病,影响美国老年人,并产生dra-
对患者、护理人员和社会造成巨大的成本和痛苦。这份行政补充文件提出,
新的深度学习方法,将神经成像数据与遗传信息相结合,从而产生丰富的
基因相关的数据表示。要实现这一研究目标,至少有三个挑战。第一、
通常使用的图像编码器采用深度神经网络来提取用于下游任务的高级特征,
但是基因相关信息可以包含在深度神经网络中不同级别和分辨率的特征中。
其次,使用深度学习来处理遗传数据在文献中基本上没有被探索过。很难设计
一种有效的编码器,用于处理基于深度学习方法的高维和离散遗传数据。第三,
缺乏一个原则性的对比学习框架来从成像和遗传数据中学习GWAS pur,
摆姿势。本文提出了一个新的跨通道对比学习框架(TM-CL)
克服这些局限性,忠实地完成我们的研究目标。我们的TM-CL包含新颖和特殊的-
科学设计的成像和遗传编码器,用于处理大脑MRI数据和高维遗传数据
作为一种新的对比学习方案,可以学习丰富的基因相关信息,从而使下游任务受益,
作为GWAS。具体来说,TM-CL包含一个独特设计的MRI编码器,可集成不同尺度的功能
和决议。此外,我们的MRI编码器包含一个基于注意力的多尺度全局变换来提取
来自MRI数据的全局信息。总体而言,MRI数据中包含的基因相关信息可以在很大程度上被捕获
in the representations申述.我们还设计了一个基于变换的遗传编码器计算遗传表示。作为
遗传数据是高维和离散的,很难设计基于深度学习的编码器来处理这样的数据。
我们的遗传编码器是基于swin变换器,其中窗口注意力和转移窗口注意力是
设计用于在分割窗口内执行注意力。通过这样做,我们的遗传编码器可以聚集足够的
基因相关信息,同时大大降低了计算成本。更重要的是,在执行注意力
在我们的遗传编码器中,计算的注意力分数可以捕获不同SNP之间的三种类型的依赖性,
结果,可以有效地捕获输入基因组数据的复杂遗传依赖性。最后我们
提出了一种新的跨模态对比学习方案,用于整合成像数据和遗传学。基于
提出的MRI和遗传编码器,我们执行MRI表示之间的互信息最大化
和遗传表征作为学习目标。我们的对比框架能够产生更多的信息-
积极和歧视基因相关的表示,提高下游任务,如GWAS的性能。
通过忠实地完成这些研究目标,我们期望促进发现与AD相关的新基因,
从而揭示AD的原因和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MYRIAM FORNAGE其他文献
MYRIAM FORNAGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MYRIAM FORNAGE', 18)}}的其他基金
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10369339 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10675679 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
- 批准号:
10827718 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
- 批准号:
10599738 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10611823 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10436262 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10212068 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9792270 - 财政年份:2016
- 资助金额:
$ 37.37万 - 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
- 批准号:
9272153 - 财政年份:2016
- 资助金额:
$ 37.37万 - 项目类别:
ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems
通过内表型、组学对多种族队列进行 ADSP 随访
- 批准号:
9078875 - 财政年份:2016
- 资助金额:
$ 37.37万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant