Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)

阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)

基本信息

项目摘要

Project Summary Alzheimer’s disease (AD) is characterized by the progressive impairment of cognitive and memory functions and is the most common form of dementia in the elderly. It affects 5.6 million Americans over the age of 65 and exacts tremendous and increasing demands on patients, caregivers, and healthcare resources, making this condition among the most significant public health problems of our time. Despite extensive studies, our understanding of the biology and pathophysiology of AD is still limited, hindering advances in the development of therapeutic and preventive strategies. Genetic studies of AD have successfully identified 40 novel loci but these explain only a fraction of the overall disease risk, suggesting opportunities for additional discoveries. Advanced neuroimaging is an essential part of current AD clinical and research investigations, which generally focus on relatively few imaging phenotypes developed by neuro- radiologists. However, there is a growing interest in exploiting the high-content information in large-scale, high dimensional multimodal neuroimaging data to identify novel AD biomarkers. Deep learning (DL) methods, an emerging area of machine learning research, uses raw images to derive optimal vector representations of imaging contents, which can be used as informative AD endophenotypes. The overall goal of the proposed supplement is to benchmark the AI algorithms we are developing on a standardized neuroimaging dataset. We will work on two topics: Predicting clinical decline (prognosis) from baseline T1-weighted brain MRI, and Discovery of genetic loci in whole- genome sequence data associated with brain MRI-derived endophenotypes. This is a collaboration with the other two U01 awards to improve the rigor and reproducibility. We will make the software tools and results publicly available. This will positively impact the larger research community.
项目摘要 阿尔茨海默病(AD)的特征是认知和记忆功能的进行性损害 是老年人中最常见的痴呆症形式。它影响着560万65岁以上的美国人 对患者、护理人员和医疗保健资源提出了巨大且日益增长的要求,使得 这种情况是我们这个时代最严重的公共卫生问题之一。尽管进行了广泛的研究,我们的 对阿尔茨海默病的生物学和病理生理学的了解仍然有限,阻碍了发展的进展 治疗和预防策略。阿尔茨海默病的遗传学研究已成功识别出40个新的基因座,但 这些只解释了总体疾病风险的一小部分,表明有机会进行更多的发现。 高级神经成像是当前AD临床和研究研究的重要组成部分,通常情况下 专注于神经放射科医生开发的相对较少的成像表型。然而,有一个不断增长的 在大规模、高维多模式神经成像中开发高内容信息的兴趣 识别新的AD生物标记物的数据。深度学习方法--机器学习的一个新兴领域 研究,使用原始图像来获得成像内容的最佳矢量表示,这可以用作 信息丰富的AD内表型。拟议补充方案的总体目标是对人工智能进行基准测试 我们正在标准化的神经成像数据集上开发算法。我们将致力于两个主题:预测 临床(预后)较基线T1加权脑MRI下降,并发现整个 与脑MRI衍生的内表型相关的基因组序列数据。这是与 另外两个U01奖项,以提高严格性和重复性。我们会把软件的工具和结果 向公众开放。这将对更大的研究界产生积极影响。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The spread of COVID-19 vaccine information in Arabic on YouTube: A network exposure study.
YouTube 上阿拉伯语 COVID-19 疫苗信息的传播:一项网络曝光研究。
  • DOI:
    10.1177/20552076231205714
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zeid, Nour;Tang, Lu;Amith, Muhammad Tuan
  • 通讯作者:
    Amith, Muhammad Tuan
Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts.
  • DOI:
    10.1038/s41598-022-20646-1
  • 发表时间:
    2022-09-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tang, Yi-Ching;Powell, Reid T.;Gottlieb, Assaf
  • 通讯作者:
    Gottlieb, Assaf
Genetic InfoMax: Exploring Mutual Information Maximization in High-Dimensional Imaging Genetics Studies
  • DOI:
    10.48550/arxiv.2309.15132
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaochen Xie;Z. Xie;Sheikh Muhammad Saiful Islam;D. Zhi;Shuiwang Ji
  • 通讯作者:
    Yaochen Xie;Z. Xie;Sheikh Muhammad Saiful Islam;D. Zhi;Shuiwang Ji
Mining the Metabolic Capacity of Clostridium sporogenes Aided by Machine Learning.
机器学习辅助挖掘产孢梭菌的代谢能力。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MYRIAM FORNAGE其他文献

MYRIAM FORNAGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MYRIAM FORNAGE', 18)}}的其他基金

Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
  • 批准号:
    10369339
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10653800
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10675679
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
  • 批准号:
    10611823
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease (Parent grant)
阿尔茨海默氏病深度学习衍生的神经影像内表型的遗传学(家长资助)
  • 批准号:
    10599738
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10436262
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
  • 批准号:
    10212068
  • 财政年份:
    2021
  • 资助金额:
    $ 38.06万
  • 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
  • 批准号:
    9792270
  • 财政年份:
    2016
  • 资助金额:
    $ 38.06万
  • 项目类别:
Microglial, Inflammatory and Omics Markers of Cerebral Small Vessel Disease in the CHARGE Consortium
CHARGE 联盟中脑小血管疾病的小胶质细胞、炎症和组学标记
  • 批准号:
    9272153
  • 财政年份:
    2016
  • 资助金额:
    $ 38.06万
  • 项目类别:
ADSP Follow-up in Multi-Ethnic Cohorts via Endophenotypes, Omics & Model Systems
通过内表型、组学对多种族队列进行 ADSP 随访
  • 批准号:
    9078875
  • 财政年份:
    2016
  • 资助金额:
    $ 38.06万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了