Using 3D Nonwovens Fabrication to Engineer Region-Specific Extracellular Matrix Structure and Bioactivity of the Knee Meniscus
使用 3D 非织造布制造来设计膝关节半月板的区域特异性细胞外基质结构和生物活性
基本信息
- 批准号:10441557
- 负责人:
- 金额:$ 41.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAnatomyArchitectureBehaviorBiologicalBiomechanicsBiopolymersCaliberCell Culture TechniquesCell Differentiation processCell SurvivalCellsCharacteristicsClinical TreatmentCollagenComplexControl GroupsCuesDataElectrospinningEngineeringExtracellular MatrixFamily suidaeFiberFormulationGeometryGoalsHybridsImplantIn VitroInfiltrationInjuryIntervertebral disc structureJointsKneeKnee InjuriesKnowledgeLigamentsMechanicsMeniscus structure of jointModelingMorphologyOperative Surgical ProceduresOrthopedicsOutcomePatient-Focused OutcomesPatientsPhysiologicalPolyestersPolymersPolyurethanesPorosityProcessProductionPropertyProteomicsPublic HealthRegenerative MedicineReportingReproducibilityResearchShapesSoft Tissue InjuriesStifle jointStructureStructure-Activity RelationshipSurgical suturesSynovial CellSystemTechniquesTechnologyTendon structureTestingTissue EngineeringTissuesTranslationsWorkbasebioactive scaffoldcartilage degradationclinical applicationdesignimprovedin vivojoint destructionmechanical propertiesmeltingmeniscal tearmeniscus injurynovelpreventrepair modelrepairedscaffoldsocioeconomicsthree dimensional structure
项目摘要
PROJECT SUMMARY
Meniscal tears are the most commonly reported knee injuries, and approximately 1 million surgeries involving
the meniscus are performed annually in the US. Tissue engineering and regenerative medicine approaches are
being actively pursued as potential alternatives to overcome limitations of current clinical treatments. Yet, the
translation of these approaches to clinical application has been hampered by their limited ability to efficiently and
reproducibly create physiologic-sized scaffolds featuring anisotropic structural and mechanical properties on the
order of native meniscus and zone-specific biological cues provided by the ECM. The overall goals of this
proposal are to 1) develop a scaffold that recapitulates the complex structural and mechanical characteristics of
the meniscus at multiple scales and incorporates zone-specific ECM cues and 2) assess the long-term function
of such scaffolds and their ability to prevent joint degeneration in-vivo. We will use a new high-throughput hybrid
approach of 3D Melt Blowing (3DMB) in conjunction with Solution Blowing (SB) that synergistically integrates
attributes of traditional nonwovens techniques and 3D printing to create a scaffold featuring macro-geometry,
fibrous microarchitecture, and zonal biological cues (meniscus-derived ECM (mECM)) to match the native
meniscus. We hypothesize that both biomechanics and mECM cues need to be similar to the meniscus to
achieve superior in-vivo outcomes, primarily, reduced cartilage degeneration. Aim 1 is to determine how primary
3DMB and SB process variables influence the structural architecture and biomechanical properties of
anatomically-sized meniscus scaffolds made of selected biopolymers and mECM. Aim 2 is to determine whether
the incorporation of zone-specific mECM improves infiltration and tissue formation by cells as well as integration
with the surrounding meniscus tissue. Aim 3 is to determine whether cartilage degeneration following partial
meniscectomy is reduced through the addition of an appropriate mECM formulation within scaffolds with
meniscus-matched mechanics. On completion, this project will provide fundamental knowledge about the micro-
and macro-level process-structure-function relationships in meniscus-relevant bioactive scaffolds fabricated
using our new nonwovens approach, and will serve as a base technology of great significance allowing advances
in the treatment of orthopaedic fibrous soft tissue injuries.
项目概要
半月板撕裂是最常见的膝关节损伤,大约有 100 万例手术涉及
半月板检查每年在美国进行一次。组织工程和再生医学方法是
正在积极寻求作为克服当前临床治疗局限性的潜在替代方案。然而,
这些方法向临床应用的转化因其有效和有效的能力有限而受到阻碍。
可重复地创建具有各向异性结构和机械性能的生理尺寸支架
原生半月板的顺序和 ECM 提供的特定区域的生物线索。本次活动的总体目标
建议1)开发一种支架,概括复杂的结构和机械特性
多尺度的半月板并结合特定区域的 ECM 线索,2) 评估长期功能
这种支架及其预防体内关节退化的能力。我们将使用一种新的高通量混合
3D 熔喷 (3DMB) 与溶液吹塑 (SB) 相结合的方法,协同集成
传统非织造布技术和 3D 打印的属性来创建具有宏观几何形状的支架,
纤维微结构和区域生物线索(半月板衍生的 ECM (mECM))以匹配天然
半月板。我们假设生物力学和 mECM 线索都需要与半月板相似才能
实现优异的体内结果,主要是减少软骨退化。目标 1 是确定主要程度
3DMB 和 SB 工艺变量影响结构体系和生物力学特性
由选定的生物聚合物和 mECM 制成的符合解剖学尺寸的半月板支架。目标 2 是确定是否
区域特异性 mECM 的结合改善了细胞的浸润和组织形成以及整合
与周围的半月板组织。目标3是确定部分软骨是否退化
通过在支架内添加适当的 mECM 制剂来减少半月板切除术
弯月面匹配力学。完成后,该项目将提供有关微观的基础知识
以及半月板相关生物活性支架的宏观过程-结构-功能关系
使用我们新的非织造布方法,并将作为具有重要意义的基础技术,推动进步
用于治疗骨科纤维软组织损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew B Fisher其他文献
Matthew B Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew B Fisher', 18)}}的其他基金
Using 3D Nonwovens Fabrication to Engineer Region-Specific Extracellular Matrix Structure and Bioactivity of the Knee Meniscus
使用 3D 非织造布制造来设计膝关节半月板的区域特异性细胞外基质结构和生物活性
- 批准号:
10296121 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
Using 3D Nonwovens Fabrication to Engineer Region-Specific Extracellular Matrix Structure and Bioactivity of the Knee Meniscus
使用 3D 非织造布制造来设计膝关节半月板的区域特异性细胞外基质结构和生物活性
- 批准号:
10640201 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
Training Grant in Comparative Molecular Medicine
比较分子医学培训补助金
- 批准号:
10621224 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
Engineering Multi-scale Structure of the Knee Meniscus using Advanced 3D Nonwovens Fabrication
使用先进的 3D 非织造布制造技术设计膝盖半月板的多尺度结构
- 批准号:
10246257 - 财政年份:2020
- 资助金额:
$ 41.76万 - 项目类别:
Engineering Multi-scale Structure of the Knee Meniscus using Advanced 3D Nonwovens Fabrication
使用先进的 3D 非织造布制造技术设计膝盖半月板的多尺度结构
- 批准号:
9895191 - 财政年份:2020
- 资助金额:
$ 41.76万 - 项目类别:
Sex- and Age-dependent ACL Function in the Growing Knee Joint
膝关节生长过程中 ACL 功能的性别和年龄依赖性
- 批准号:
10392333 - 财政年份:2018
- 资助金额:
$ 41.76万 - 项目类别:
Sex- and Age-dependent ACL Function in the Growing Knee Joint
膝关节生长过程中 ACL 功能的性别和年龄依赖性
- 批准号:
9524108 - 财政年份:2018
- 资助金额:
$ 41.76万 - 项目类别:
Sex- and Age-dependent ACL Function in the Growing Knee Joint
膝关节生长过程中 ACL 功能的性别和年龄依赖性
- 批准号:
9906172 - 财政年份:2018
- 资助金额:
$ 41.76万 - 项目类别:
Age-Dependent ACL Function During Growth: Guiding Injury Treatment in Children
生长过程中年龄依赖性 ACL 功能:指导儿童损伤治疗
- 批准号:
8895469 - 财政年份:2015
- 资助金额:
$ 41.76万 - 项目类别:
Stem Cell-laden Hyaluronic Acid Gels for Cartilage Repair: In Vivo Translation
用于软骨修复的干细胞透明质酸凝胶:体内翻译
- 批准号:
8456453 - 财政年份:2013
- 资助金额:
$ 41.76万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 41.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 41.76万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 41.76万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 41.76万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 41.76万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 41.76万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 41.76万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 41.76万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 41.76万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 41.76万 - 项目类别:
Standard Grant