Using 3D Nonwovens Fabrication to Engineer Region-Specific Extracellular Matrix Structure and Bioactivity of the Knee Meniscus
使用 3D 非织造布制造来设计膝关节半月板的区域特异性细胞外基质结构和生物活性
基本信息
- 批准号:10640201
- 负责人:
- 金额:$ 63.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAnatomyArchitectureBehaviorBiologicalBiomechanicsBiopolymersCell Culture TechniquesCell Differentiation processCell SurvivalCellsCharacteristicsClinical TreatmentCollagenComplexControl GroupsCuesDataDiameterElectrospinningEngineeringExtracellular MatrixFamily suidaeFiberFormulationGeometryGoalsHybridsImplantIn VitroInfiltrationInjuryIntervertebral disc structureJointsKneeKnee InjuriesKnowledgeLigamentsMechanicsMeniscus structure of jointModelingMorphologyOperative Surgical ProceduresOrthopedicsOutcomePatient-Focused OutcomesPatientsPhysiologicalPolyestersPolymersPolyurethanesPorosityProcessProductionPropertyProteomicsPublic HealthRegenerative MedicineReportingReproducibilityResearchShapesSoft Tissue InjuriesStifle jointStructureStructure-Activity RelationshipSurgical suturesSynovial CellSystemTechniquesTechnologyTendon structureTestingTissue EngineeringTissuesWorkbasebioactive scaffoldcartilage degradationclinical applicationdesignfabricationimprovedin vivojoint destructionmechanical propertiesmeltingmeniscal tearmeniscus injurynovelpreventrepair modelrepairedscaffoldsocioeconomicsthree dimensional structuretranslational approach
项目摘要
PROJECT SUMMARY
Meniscal tears are the most commonly reported knee injuries, and approximately 1 million surgeries involving
the meniscus are performed annually in the US. Tissue engineering and regenerative medicine approaches are
being actively pursued as potential alternatives to overcome limitations of current clinical treatments. Yet, the
translation of these approaches to clinical application has been hampered by their limited ability to efficiently and
reproducibly create physiologic-sized scaffolds featuring anisotropic structural and mechanical properties on the
order of native meniscus and zone-specific biological cues provided by the ECM. The overall goals of this
proposal are to 1) develop a scaffold that recapitulates the complex structural and mechanical characteristics of
the meniscus at multiple scales and incorporates zone-specific ECM cues and 2) assess the long-term function
of such scaffolds and their ability to prevent joint degeneration in-vivo. We will use a new high-throughput hybrid
approach of 3D Melt Blowing (3DMB) in conjunction with Solution Blowing (SB) that synergistically integrates
attributes of traditional nonwovens techniques and 3D printing to create a scaffold featuring macro-geometry,
fibrous microarchitecture, and zonal biological cues (meniscus-derived ECM (mECM)) to match the native
meniscus. We hypothesize that both biomechanics and mECM cues need to be similar to the meniscus to
achieve superior in-vivo outcomes, primarily, reduced cartilage degeneration. Aim 1 is to determine how primary
3DMB and SB process variables influence the structural architecture and biomechanical properties of
anatomically-sized meniscus scaffolds made of selected biopolymers and mECM. Aim 2 is to determine whether
the incorporation of zone-specific mECM improves infiltration and tissue formation by cells as well as integration
with the surrounding meniscus tissue. Aim 3 is to determine whether cartilage degeneration following partial
meniscectomy is reduced through the addition of an appropriate mECM formulation within scaffolds with
meniscus-matched mechanics. On completion, this project will provide fundamental knowledge about the micro-
and macro-level process-structure-function relationships in meniscus-relevant bioactive scaffolds fabricated
using our new nonwovens approach, and will serve as a base technology of great significance allowing advances
in the treatment of orthopaedic fibrous soft tissue injuries.
项目总结
半月板撕裂是最常见的膝关节损伤报告,约有100万例手术涉及
在美国,每年都会进行半月板手术。组织工程学和再生医学的方法是
被积极寻求作为潜在的替代方案,以克服目前临床治疗的局限性。然而,
将这些方法转化为临床应用一直受到它们有限的有效和
可重复创建具有各向异性结构和力学性能的生理大小支架
由ECM提供的本地半月板的顺序和特定区域的生物线索。这个项目的总体目标是
建议是1)开发一种支架,它概括了
半月板在多个尺度上,并结合区域特定的ECM提示和2)评估长期功能
这种支架及其在体内防止关节退变的能力。我们将使用一种新的高吞吐量混合动力车
三维熔体吹炼(3DMB)与溶液吹炼(SB)协同集成的方法
传统非织造布技术和3D打印的属性,以创建具有宏观几何特征的支架,
纤维微结构和带状生物线索(半月板衍生的ECM(MECM))以匹配本地
半月板。我们假设生物力学和MECM信号都需要类似于半月板
在体内实现更好的结果,主要是减少软骨退化。目标1是确定主要的
3DMB和SB工艺变量影响内固定器的结构和生物力学性能
由选定的生物聚合物和MECM制成的解剖大小的半月板支架。目标2是确定是否
区域特异性mECM的加入改善了细胞的渗透和组织形成以及整合
和周围的半月板组织。目的3是确定部分关节术后软骨退行性变
通过在支架内添加适当的mECM配方来减少半月板切除
半月面匹配的机械师。完成后,该项目将提供有关微型计算机的基础知识
制备的半月面相关生物活性支架的宏观工艺-结构-功能关系
使用我们新的非织造布方法,并将作为一项具有重要意义的基础技术,使之得以进步
在骨科纤维软组织损伤的治疗中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiphase CFD Modeling and Experimental Validation of Polymer and Attenuating Air Jet Interactions in Nonwoven Annular Melt Blowing.
- DOI:10.1021/acs.iecr.2c01710
- 发表时间:2022-09-21
- 期刊:
- 影响因子:4.2
- 作者:Schuchard, Karl G.;Pawar, Advay;Anderson, Bruce;Pourdeyhimi, Behnam;Shirwaiker, Rohan A.
- 通讯作者:Shirwaiker, Rohan A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew B Fisher其他文献
Matthew B Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew B Fisher', 18)}}的其他基金
Using 3D Nonwovens Fabrication to Engineer Region-Specific Extracellular Matrix Structure and Bioactivity of the Knee Meniscus
使用 3D 非织造布制造来设计膝关节半月板的区域特异性细胞外基质结构和生物活性
- 批准号:
10296121 - 财政年份:2021
- 资助金额:
$ 63.89万 - 项目类别:
Using 3D Nonwovens Fabrication to Engineer Region-Specific Extracellular Matrix Structure and Bioactivity of the Knee Meniscus
使用 3D 非织造布制造来设计膝关节半月板的区域特异性细胞外基质结构和生物活性
- 批准号:
10441557 - 财政年份:2021
- 资助金额:
$ 63.89万 - 项目类别:
Training Grant in Comparative Molecular Medicine
比较分子医学培训补助金
- 批准号:
10621224 - 财政年份:2021
- 资助金额:
$ 63.89万 - 项目类别:
Engineering Multi-scale Structure of the Knee Meniscus using Advanced 3D Nonwovens Fabrication
使用先进的 3D 非织造布制造技术设计膝盖半月板的多尺度结构
- 批准号:
10246257 - 财政年份:2020
- 资助金额:
$ 63.89万 - 项目类别:
Engineering Multi-scale Structure of the Knee Meniscus using Advanced 3D Nonwovens Fabrication
使用先进的 3D 非织造布制造技术设计膝盖半月板的多尺度结构
- 批准号:
9895191 - 财政年份:2020
- 资助金额:
$ 63.89万 - 项目类别:
Sex- and Age-dependent ACL Function in the Growing Knee Joint
膝关节生长过程中 ACL 功能的性别和年龄依赖性
- 批准号:
10392333 - 财政年份:2018
- 资助金额:
$ 63.89万 - 项目类别:
Sex- and Age-dependent ACL Function in the Growing Knee Joint
膝关节生长过程中 ACL 功能的性别和年龄依赖性
- 批准号:
9524108 - 财政年份:2018
- 资助金额:
$ 63.89万 - 项目类别:
Sex- and Age-dependent ACL Function in the Growing Knee Joint
膝关节生长过程中 ACL 功能的性别和年龄依赖性
- 批准号:
9906172 - 财政年份:2018
- 资助金额:
$ 63.89万 - 项目类别:
Age-Dependent ACL Function During Growth: Guiding Injury Treatment in Children
生长过程中年龄依赖性 ACL 功能:指导儿童损伤治疗
- 批准号:
8895469 - 财政年份:2015
- 资助金额:
$ 63.89万 - 项目类别:
Stem Cell-laden Hyaluronic Acid Gels for Cartilage Repair: In Vivo Translation
用于软骨修复的干细胞透明质酸凝胶:体内翻译
- 批准号:
8456453 - 财政年份:2013
- 资助金额:
$ 63.89万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 63.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 63.89万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 63.89万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 63.89万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 63.89万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 63.89万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 63.89万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 63.89万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 63.89万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 63.89万 - 项目类别:
Standard Grant














{{item.name}}会员




