Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
基本信息
- 批准号:10451612
- 负责人:
- 金额:$ 43.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alcohol consumptionAlcohol dependenceBehavioralBig DataBiologicalBiological MarkersBrainBrain imagingBrain regionClassificationClinicalClinical DataCluster AnalysisCocaine use disorderCollaborationsComputational ScienceComputer softwareDataDatabasesDevelopmentDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDistalDrug AddictionEmotionalEmotionsEtiologyExhibitsFoundationsFunctional disorderGenesGeneticGenetic MarkersGenetic RiskGenetic studyGenomicsGenotypeGoalsGraphHeritabilityHeterogeneityHumanImageIndividualInterdisciplinary StudyInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InvestigationLabelLinkMachine LearningMagnetic Resonance ImagingMental HealthMental disordersMethodologyMethodsModalityModelingMultimodal ImagingNational Institute of Mental HealthNeurobiologyNeurosciencesNicotine Use DisorderPathway interactionsPatternPhenotypeProcessResearchResearch Domain CriteriaRewardsSamplingSingle Nucleotide PolymorphismStatistical AlgorithmStatistical Data InterpretationStatistical MethodsStatistical ModelsSubstance Use DisorderSymptomsSystemTestingVariantWorkaddictionbasebig-data sciencebiobankclinical diagnosticscognitive neuroscienceconnectomeconvolutional neural networkdata structurediagnostic criteriadisease classificationdisorder subtypeendophenotypeexecutive functionexperiencefallsgenetic analysisgenetic variantgenome wide association studygenome-widegraph neural networkgray matterimaging biomarkerimaging geneticsimaging modalityindividual variationinnovationmachine learning modelmultidimensional datamultimodal datamultimodalitynetwork modelsneural correlateneurogeneticsneuroimagingneuromechanismneuropsychiatric disordernovelprecision medicineprogramsrelating to nervous systemresponserisk variantstatistical and machine learningtooltraittreatment responsewhole genome
项目摘要
ABSTRACT
This application represents our ongoing commitment to developing an innovative and interdisciplinary research
program on the classification of substance use disorders (SUDs). This research is achieved through
quantitative analysis of multidimensional data that combine clinical symptoms and diagnoses, imaging
markers, and genotypes. The team has a PI with expertise in computational science and the development and
implementation of innovative statistical algorithms to understand multidimensional data; a PI with extensive
experience in systems, imaging and addiction neuroscience; and a co-I who has expertise in the genetics of
SUDs. Our previous R01 project employed a sample of ~12,000 individuals aggregated from multiple genetic
studies of alcohol and drug dependence to generate SUD subtypes based on clinical symptoms. Because
clinical manifestations are distal endpoints in the biological pathway, the genetic effects identified are often
weak and inconsistent, and consequently difficult to detect even in large samples. As championed by the NIMH
Research Domain Criteria (RDoC) research, the etiologies of psychiatric disorders, including SUDs, can be
fruitfully characterized by dimensional neural features. This project thus extends our ongoing work to include
imaging neural features in the classification of SUDs. Specifically, we will utilize a large database from the UK
Biobank Project that provides both genetic and multi-modality magnetic resonance imaging (MRI) data.
Building on our work with the US Human Connectome Project, we aim in the current project to integrate
clinical, imaging, and genotype data to investigate the neurobiological substrates of SUD diagnostic labels, and
to derive SUD subtypes that are optimized for gene finding. Methodologically, we replace the classic statistical
analysis that is confirmatory and biased to an a priori hypothesis by an approach that emphasizes pattern
discoveries from big data. Our specific aims are to: (I): identify neuroimaging features that represent robust
markers of addiction and differentiate SUD subtypes that can be confirmed by multi-modality evidence; (II)
employ a novel brain connectivity model, on the basis of graph convolutional neural networks, to identify neural
markers that precisely characterize the differences in structural changes and functional circuits related to
SUDs; and (III) derive an innovative machine learning model to identify highly heritable neurobiological
subtypes of SUDs that facilitate investigation of the genetic basis of addiction. We will focus on alcohol and
nicotine use disorders to demonstrate the conceptual and methodological approaches. We believe that, by
providing a productive conceptual and methodological platform to integrate imaging and genetic data to
understand the etiologies of SUDs, this research is highly responsive to the RFA “Leveraging Big Data Science
to Elucidate the Neural Mechanisms of Addiction and SUD.” The machine learning tools developed for this
project will provide an innovative and reliable foundation to enhance the aggregation and analysis of
multidimensional data, and to meet the diagnostic and predictive challenges in mental health research.
摘要
这项申请代表了我们对发展创新和跨学科研究的持续承诺
物质使用障碍(SUD)分类计划。这项研究是通过
结合联合收割机临床症状和诊断、影像学
标记和基因型。该团队有一个PI,具有计算科学和开发方面的专业知识,
实施创新的统计算法来理解多维数据;具有广泛
在系统,成像和成瘾神经科学方面的经验;以及一位在遗传学方面具有专业知识的co-I。
SUD。我们之前的R 01项目采用了来自多个遗传学基因的约12,000个个体的样本,
酒精和药物依赖研究,以根据临床症状生成SUD亚型。因为
临床表现是生物学途径的远端终点,确定的遗传效应通常是
弱且不一致,因此即使在大样本中也难以检测。由NIMH倡导,
研究领域标准(RDoC)研究,精神疾病的病因,包括SUD,可以是
富有成果地以维度神经特征为特征。因此,该项目扩展了我们正在进行的工作,
在SUD的分类中成像神经特征。具体而言,我们将利用英国的大型数据库
生物库项目,提供遗传和多模态磁共振成像(MRI)数据。
在我们与美国人类连接组项目合作的基础上,我们的目标是在目前的项目中整合
临床、影像学和基因型数据,以研究SUD诊断标签的神经生物学底物,以及
以获得针对基因发现优化的SUD亚型。从方法论上讲,我们取代了传统的统计方法,
一种通过强调模式的方法对先验假设进行验证和偏见的分析
大数据的发现。我们的具体目标是:(一):确定代表鲁棒性的神经影像学特征
成瘾的标志物和区分SUD亚型,可以通过多模态证据证实;(II)
在图卷积神经网络的基础上,采用一种新的大脑连接模型来识别神经网络,
这些标记物精确地表征了结构变化和功能电路的差异,
SUD;以及(III)推导出一种创新的机器学习模型,以识别高度遗传的神经生物学
SUD的亚型,有助于研究成瘾的遗传基础。我们将专注于酒精,
尼古丁使用障碍,以证明概念和方法的方法。我们认为,通过
提供了一个富有成效的概念和方法平台,以整合成像和遗传数据,
了解SUD的病因,这项研究高度响应RFA“利用大数据科学
阐明成瘾和SUD的神经机制。”为此开发的机器学习工具
项目将提供一个创新和可靠的基础,以加强对
多维数据,并满足心理健康研究中的诊断和预测挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10267217 - 财政年份:2020
- 资助金额:
$ 43.09万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10056455 - 财政年份:2020
- 资助金额:
$ 43.09万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10668244 - 财政年份:2020
- 资助金额:
$ 43.09万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10418671 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10196980 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9980496 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9758034 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
- 批准号:
9224405 - 财政年份:2017
- 资助金额:
$ 43.09万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9000141 - 财政年份:2015
- 资助金额:
$ 43.09万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9186998 - 财政年份:2015
- 资助金额:
$ 43.09万 - 项目类别:
相似海外基金
Role of glucocorticoid receptor-mediated mRNA decay in alcohol dependence
糖皮质激素受体介导的 mRNA 衰减在酒精依赖中的作用
- 批准号:
10811212 - 财政年份:2023
- 资助金额:
$ 43.09万 - 项目类别:
6/11 Astrocyte-specific changes and interventions in alcohol dependence
6/11 星形胶质细胞特异性变化和酒精依赖干预
- 批准号:
10591606 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
An Investigation of Reward Processing in Co-occurring Alcohol Dependence and Loss of Control Eating
对同时发生的酒精依赖和饮食失控的奖励处理的研究
- 批准号:
486597 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Studentship Programs
Identifying new targets for the treatment of alcohol dependence and relapse: epigenetic analysis of the abstinent brain
确定治疗酒精依赖和复发的新靶点:戒酒大脑的表观遗传学分析
- 批准号:
10396660 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Identifying new targets for the treatment of alcohol dependence and relapse: epigenetic analysis of the abstinent brain
确定治疗酒精依赖和复发的新靶点:戒酒大脑的表观遗传学分析
- 批准号:
10553449 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
6/11 Astrocyte-specific changes and interventions in alcohol dependence
6/11 星形胶质细胞特异性变化和酒精依赖干预
- 批准号:
10409263 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Novel GLT-1 activators for the treatment of alcohol dependence: preclinical studies
用于治疗酒精依赖的新型 GLT-1 激活剂:临床前研究
- 批准号:
10517529 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Reducing alcohol-seeking behavior in a rat model of alcohol dependence
减少酒精依赖大鼠模型的寻酒行为
- 批准号:
10684236 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Opposing Contributions of Oxytocin and Corticotropin-Release Factor to Alcohol Dependence
催产素和促肾上腺皮质激素释放因子对酒精依赖的相反作用
- 批准号:
10451814 - 财政年份:2021
- 资助金额:
$ 43.09万 - 项目类别:
Opposing Contributions of Oxytocin and Corticotropin-Release Factor to Alcohol Dependence
催产素和促肾上腺皮质激素释放因子对酒精依赖的相反作用
- 批准号:
10655413 - 财政年份:2021
- 资助金额:
$ 43.09万 - 项目类别: