Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
基本信息
- 批准号:10267217
- 负责人:
- 金额:$ 43.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alcohol consumptionAlcohol dependenceBehavioralBig DataBiologicalBiological MarkersBrainBrain imagingBrain regionClassificationClinicalClinical DataCluster AnalysisCollaborationsComputational ScienceComputer softwareDataDatabasesDevelopmentDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDiseaseDistalDrug AddictionEmotionalEmotionsEtiologyExhibitsFoundationsFunctional disorderGenesGeneticGenetic MarkersGenetic RiskGenetic studyGenomicsGenotypeGoalsGraphHeritabilityHeterogeneityHumanImageIndividualInterdisciplinary StudyInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InvestigationLabelLinkMachine LearningMagnetic Resonance ImagingMental HealthMental disordersMethodologyMethodsModalityModelingMultimodal ImagingNational Institute of Mental HealthNeurobiologyNeurosciencesNicotine Use DisorderPathway interactionsPatternPhenotypeProcessResearchResearch Domain CriteriaRewardsSamplingSingle Nucleotide PolymorphismStatistical AlgorithmStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureSubstance Use DisorderSymptomsSystemTestingVariantWorkaddictionbasebig-data sciencebiobankclinical diagnosticscocaine usecognitive neuroscienceconnectomeconvolutional neural networkdata structuredisease classificationdisorder subtypeendophenotypeexecutive functionexperiencefallsgenetic analysisgenetic variantgenome wide association studygenome-widegray matterimaging biomarkerimaging geneticsimaging modalityindividual variationinnovationmultidimensional datamultimodal datamultimodalitynetwork modelsneural correlateneurogeneticsneuroimagingneuromechanismneuropsychiatric disordernovelprecision medicineprogramsrelating to nervous systemresponserisk variantstatistical and machine learningtooltraittreatment responsewhole genome
项目摘要
ABSTRACT
This application represents our ongoing commitment to developing an innovative and interdisciplinary research
program on the classification of substance use disorders (SUDs). This research is achieved through
quantitative analysis of multidimensional data that combine clinical symptoms and diagnoses, imaging
markers, and genotypes. The team has a PI with expertise in computational science and the development and
implementation of innovative statistical algorithms to understand multidimensional data; a PI with extensive
experience in systems, imaging and addiction neuroscience; and a co-I who has expertise in the genetics of
SUDs. Our previous R01 project employed a sample of ~12,000 individuals aggregated from multiple genetic
studies of alcohol and drug dependence to generate SUD subtypes based on clinical symptoms. Because
clinical manifestations are distal endpoints in the biological pathway, the genetic effects identified are often
weak and inconsistent, and consequently difficult to detect even in large samples. As championed by the NIMH
Research Domain Criteria (RDoC) research, the etiologies of psychiatric disorders, including SUDs, can be
fruitfully characterized by dimensional neural features. This project thus extends our ongoing work to include
imaging neural features in the classification of SUDs. Specifically, we will utilize a large database from the UK
Biobank Project that provides both genetic and multi-modality magnetic resonance imaging (MRI) data.
Building on our work with the US Human Connectome Project, we aim in the current project to integrate
clinical, imaging, and genotype data to investigate the neurobiological substrates of SUD diagnostic labels, and
to derive SUD subtypes that are optimized for gene finding. Methodologically, we replace the classic statistical
analysis that is confirmatory and biased to an a priori hypothesis by an approach that emphasizes pattern
discoveries from big data. Our specific aims are to: (I): identify neuroimaging features that represent robust
markers of addiction and differentiate SUD subtypes that can be confirmed by multi-modality evidence; (II)
employ a novel brain connectivity model, on the basis of graph convolutional neural networks, to identify neural
markers that precisely characterize the differences in structural changes and functional circuits related to
SUDs; and (III) derive an innovative machine learning model to identify highly heritable neurobiological
subtypes of SUDs that facilitate investigation of the genetic basis of addiction. We will focus on alcohol and
nicotine use disorders to demonstrate the conceptual and methodological approaches. We believe that, by
providing a productive conceptual and methodological platform to integrate imaging and genetic data to
understand the etiologies of SUDs, this research is highly responsive to the RFA “Leveraging Big Data Science
to Elucidate the Neural Mechanisms of Addiction and SUD.” The machine learning tools developed for this
project will provide an innovative and reliable foundation to enhance the aggregation and analysis of
multidimensional data, and to meet the diagnostic and predictive challenges in mental health research.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10056455 - 财政年份:2020
- 资助金额:
$ 43.26万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10451612 - 财政年份:2020
- 资助金额:
$ 43.26万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10668244 - 财政年份:2020
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10418671 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10196980 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9980496 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9758034 - 财政年份:2019
- 资助金额:
$ 43.26万 - 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
- 批准号:
9224405 - 财政年份:2017
- 资助金额:
$ 43.26万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9000141 - 财政年份:2015
- 资助金额:
$ 43.26万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9186998 - 财政年份:2015
- 资助金额:
$ 43.26万 - 项目类别:
相似海外基金
Role of glucocorticoid receptor-mediated mRNA decay in alcohol dependence
糖皮质激素受体介导的 mRNA 衰减在酒精依赖中的作用
- 批准号:
10811212 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
6/11 Astrocyte-specific changes and interventions in alcohol dependence
6/11 星形胶质细胞特异性变化和酒精依赖干预
- 批准号:
10591606 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
An Investigation of Reward Processing in Co-occurring Alcohol Dependence and Loss of Control Eating
对同时发生的酒精依赖和饮食失控的奖励处理的研究
- 批准号:
486597 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Studentship Programs
Identifying new targets for the treatment of alcohol dependence and relapse: epigenetic analysis of the abstinent brain
确定治疗酒精依赖和复发的新靶点:戒酒大脑的表观遗传学分析
- 批准号:
10396660 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Identifying new targets for the treatment of alcohol dependence and relapse: epigenetic analysis of the abstinent brain
确定治疗酒精依赖和复发的新靶点:戒酒大脑的表观遗传学分析
- 批准号:
10553449 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
6/11 Astrocyte-specific changes and interventions in alcohol dependence
6/11 星形胶质细胞特异性变化和酒精依赖干预
- 批准号:
10409263 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Novel GLT-1 activators for the treatment of alcohol dependence: preclinical studies
用于治疗酒精依赖的新型 GLT-1 激活剂:临床前研究
- 批准号:
10517529 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Reducing alcohol-seeking behavior in a rat model of alcohol dependence
减少酒精依赖大鼠模型的寻酒行为
- 批准号:
10684236 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Opposing Contributions of Oxytocin and Corticotropin-Release Factor to Alcohol Dependence
催产素和促肾上腺皮质激素释放因子对酒精依赖的相反作用
- 批准号:
10451814 - 财政年份:2021
- 资助金额:
$ 43.26万 - 项目类别:
Opposing Contributions of Oxytocin and Corticotropin-Release Factor to Alcohol Dependence
催产素和促肾上腺皮质激素释放因子对酒精依赖的相反作用
- 批准号:
10655413 - 财政年份:2021
- 资助金额:
$ 43.26万 - 项目类别:














{{item.name}}会员




