Multi-level statistical classification of substance use disorder

物质使用障碍的多级统计分类

基本信息

  • 批准号:
    10267217
  • 负责人:
  • 金额:
    $ 43.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT This application represents our ongoing commitment to developing an innovative and interdisciplinary research program on the classification of substance use disorders (SUDs). This research is achieved through quantitative analysis of multidimensional data that combine clinical symptoms and diagnoses, imaging markers, and genotypes. The team has a PI with expertise in computational science and the development and implementation of innovative statistical algorithms to understand multidimensional data; a PI with extensive experience in systems, imaging and addiction neuroscience; and a co-I who has expertise in the genetics of SUDs. Our previous R01 project employed a sample of ~12,000 individuals aggregated from multiple genetic studies of alcohol and drug dependence to generate SUD subtypes based on clinical symptoms. Because clinical manifestations are distal endpoints in the biological pathway, the genetic effects identified are often weak and inconsistent, and consequently difficult to detect even in large samples. As championed by the NIMH Research Domain Criteria (RDoC) research, the etiologies of psychiatric disorders, including SUDs, can be fruitfully characterized by dimensional neural features. This project thus extends our ongoing work to include imaging neural features in the classification of SUDs. Specifically, we will utilize a large database from the UK Biobank Project that provides both genetic and multi-modality magnetic resonance imaging (MRI) data. Building on our work with the US Human Connectome Project, we aim in the current project to integrate clinical, imaging, and genotype data to investigate the neurobiological substrates of SUD diagnostic labels, and to derive SUD subtypes that are optimized for gene finding. Methodologically, we replace the classic statistical analysis that is confirmatory and biased to an a priori hypothesis by an approach that emphasizes pattern discoveries from big data. Our specific aims are to: (I): identify neuroimaging features that represent robust markers of addiction and differentiate SUD subtypes that can be confirmed by multi-modality evidence; (II) employ a novel brain connectivity model, on the basis of graph convolutional neural networks, to identify neural markers that precisely characterize the differences in structural changes and functional circuits related to SUDs; and (III) derive an innovative machine learning model to identify highly heritable neurobiological subtypes of SUDs that facilitate investigation of the genetic basis of addiction. We will focus on alcohol and nicotine use disorders to demonstrate the conceptual and methodological approaches. We believe that, by providing a productive conceptual and methodological platform to integrate imaging and genetic data to understand the etiologies of SUDs, this research is highly responsive to the RFA “Leveraging Big Data Science to Elucidate the Neural Mechanisms of Addiction and SUD.” The machine learning tools developed for this project will provide an innovative and reliable foundation to enhance the aggregation and analysis of multidimensional data, and to meet the diagnostic and predictive challenges in mental health research.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinbo Bi其他文献

Jinbo Bi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinbo Bi', 18)}}的其他基金

Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10056455
  • 财政年份:
    2020
  • 资助金额:
    $ 43.26万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10451612
  • 财政年份:
    2020
  • 资助金额:
    $ 43.26万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10668244
  • 财政年份:
    2020
  • 资助金额:
    $ 43.26万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10418671
  • 财政年份:
    2019
  • 资助金额:
    $ 43.26万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10196980
  • 财政年份:
    2019
  • 资助金额:
    $ 43.26万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9980496
  • 财政年份:
    2019
  • 资助金额:
    $ 43.26万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9758034
  • 财政年份:
    2019
  • 资助金额:
    $ 43.26万
  • 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
  • 批准号:
    9224405
  • 财政年份:
    2017
  • 资助金额:
    $ 43.26万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9000141
  • 财政年份:
    2015
  • 资助金额:
    $ 43.26万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9186998
  • 财政年份:
    2015
  • 资助金额:
    $ 43.26万
  • 项目类别:

相似海外基金

Role of glucocorticoid receptor-mediated mRNA decay in alcohol dependence
糖皮质激素受体介导的 mRNA 衰减在酒精依赖中的作用
  • 批准号:
    10811212
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
6/11 Astrocyte-specific changes and interventions in alcohol dependence
6/11 星形胶质细胞特异性变化和酒精依赖干预
  • 批准号:
    10591606
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
An Investigation of Reward Processing in Co-occurring Alcohol Dependence and Loss of Control Eating
对同时发生的酒精依赖和饮食失控的奖励处理的研究
  • 批准号:
    486597
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Studentship Programs
Identifying new targets for the treatment of alcohol dependence and relapse: epigenetic analysis of the abstinent brain
确定治疗酒精依赖和复发的新靶点:戒酒大脑的表观遗传学分析
  • 批准号:
    10396660
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
Identifying new targets for the treatment of alcohol dependence and relapse: epigenetic analysis of the abstinent brain
确定治疗酒精依赖和复发的新靶点:戒酒大脑的表观遗传学分析
  • 批准号:
    10553449
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
6/11 Astrocyte-specific changes and interventions in alcohol dependence
6/11 星形胶质细胞特异性变化和酒精依赖干预
  • 批准号:
    10409263
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
Novel GLT-1 activators for the treatment of alcohol dependence: preclinical studies
用于治疗酒精依赖的新型 GLT-1 激活剂:临床前研究
  • 批准号:
    10517529
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
Reducing alcohol-seeking behavior in a rat model of alcohol dependence
减少酒精依赖大鼠模型的寻酒行为
  • 批准号:
    10684236
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
Opposing Contributions of Oxytocin and Corticotropin-Release Factor to Alcohol Dependence
催产素和促肾上腺皮质激素释放因子对酒精依赖的相反作用
  • 批准号:
    10451814
  • 财政年份:
    2021
  • 资助金额:
    $ 43.26万
  • 项目类别:
Opposing Contributions of Oxytocin and Corticotropin-Release Factor to Alcohol Dependence
催产素和促肾上腺皮质激素释放因子对酒精依赖的相反作用
  • 批准号:
    10655413
  • 财政年份:
    2021
  • 资助金额:
    $ 43.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了