SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics

SCH:移动传感器分析提供的个性化抑郁症治疗支持

基本信息

  • 批准号:
    9758034
  • 负责人:
  • 金额:
    $ 29.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-18 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The current best practice guidelines for treating depression call for close monitoring of patients, and periodically adjusting treatment as needed. This project will advance personalized depression treatment by developing an innovative system, DepWatch, that leverages mobile health technologies and machine learning tools to provide clinicians objective, accurate, and timely assessment of depression symptoms to assist with their clinical decision making process. Specifically, DepWatch collects sensory data passively from smartphones and wristbands, without any user interaction, and uses simple user-friendly interfaces to collect ecological momentary assessments (EMA), medication adherence and safety related data from patients. The collected data will be fed to machine learning models to be developed in the project to provide weekly assessment of patient symptom levels and predict the trajectory of treatment response over time. The assessment and prediction results are then presented using a graphic interface to clinicians to help them make critical treatment decisions. Our project comprises two studies. Phase I collects sensory data and other data (e.g., clinical data, EMA, tolerability and safety data) from 250 adult participants with unstable depression symptomatology. The data thus collected will be used to develop and validate assessment and prediction models, which will be incorporated into DepWatch system. In Phase II, three clinicians will use DepWatch to support their clinical decision making process; a total of 50 participants under treatment by the three participating clinicians will be recruited for the study. A number of innovative machine learning techniques will be developed. These include a set of new learning formulations to construct matrix-based longitudinal predictive models, and determine the temporal contingency and the most influential features, and deep learning based data imputation methods that can handle both problems of sporadic missing data as well as missing data in an entire view. In addition, multi-task feature learning models and feature selection techniques will be expanded and refined for this challenging setting of large-scale heterogeneous data.
目前治疗抑郁症的最佳实践指南要求密切监测患者,以及 根据需要定期调整治疗。该项目将通过以下方式推进个性化抑郁症治疗 开发利用移动医疗技术和机器的创新系统DepWatch 为临床医生提供客观、准确和及时的抑郁症状评估的学习工具 协助他们的临床决策过程。具体地说,DepWatch被动地收集感觉数据 智能手机和腕带,无需任何用户交互,并使用简单的用户友好界面 收集生态瞬时评估(EMA)、用药依从性和安全相关数据 病人。收集到的数据将被馈送到机器学习模型中,以便在项目中开发 每周评估患者的症状水平,并预测治疗反应的轨迹 时间到了。然后使用图形界面将评估和预测结果呈现给临床医生 帮助他们做出关键的治疗决定。我们的项目包括两项研究。第一阶段收集感官 来自250名成年参与者的数据和其他数据(例如,临床数据、EMA、耐受性和安全性数据) 不稳定的抑郁症状学。收集的数据将用于开发和验证 评估和预测模型,这些模型将被纳入DepWatch系统。在第二阶段,第三阶段 临床医生将使用DepWatch支持他们的临床决策过程;总共有50名参与者 在三名参与的临床医生的治疗下,将为这项研究招募人员。一些创新的 将开发机器学习技术。其中包括一套新的学习公式,以 构建基于矩阵的纵向预测模型,并确定时间偶然性和 最有影响力的特征,以及可以处理这两个问题的基于深度学习的数据填充方法 零星的丢失数据以及整个视图中的丢失数据。此外,多任务特征学习 模型和特征选择技术将针对这一具有挑战性的大规模环境进行扩展和改进 异类数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinbo Bi其他文献

Jinbo Bi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinbo Bi', 18)}}的其他基金

Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10267217
  • 财政年份:
    2020
  • 资助金额:
    $ 29.24万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10056455
  • 财政年份:
    2020
  • 资助金额:
    $ 29.24万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10451612
  • 财政年份:
    2020
  • 资助金额:
    $ 29.24万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10668244
  • 财政年份:
    2020
  • 资助金额:
    $ 29.24万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10418671
  • 财政年份:
    2019
  • 资助金额:
    $ 29.24万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10196980
  • 财政年份:
    2019
  • 资助金额:
    $ 29.24万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9980496
  • 财政年份:
    2019
  • 资助金额:
    $ 29.24万
  • 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
  • 批准号:
    9224405
  • 财政年份:
    2017
  • 资助金额:
    $ 29.24万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9000141
  • 财政年份:
    2015
  • 资助金额:
    $ 29.24万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9186998
  • 财政年份:
    2015
  • 资助金额:
    $ 29.24万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了