Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
基本信息
- 批准号:10668244
- 负责人:
- 金额:$ 43.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alcohol dependenceBehavioralBig DataBiologicalBrainBrain imagingBrain regionClassificationClinicalClinical DataCluster AnalysisCocaine use disorderCollaborationsComputational ScienceComputer softwareDataDatabasesDevelopmentDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDistalDrug AddictionEmotionalEmotionsEtiologyExhibitsFoundationsFunctional disorderGenesGeneticGenetic MarkersGenetic RiskGenetic studyGenomicsGenotypeGoalsGraphHeritabilityHeterogeneityHumanImageIndividualInterdisciplinary StudyInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InvestigationLabelLinkMachine LearningMagnetic Resonance ImagingMapsMental HealthMental disordersMethodologyMethodsModalityModelingMultimodal ImagingNational Institute of Mental HealthNeurobiologyNeurosciencesNicotine Use DisorderPathway interactionsPatternPhenotypeProcessProductivityResearchResearch Domain CriteriaRewardsSamplingSingle Nucleotide PolymorphismStatistical AlgorithmStatistical Data InterpretationStatistical MethodsStatistical ModelsSubstance Use DisorderSymptomsSystemTestingVariantWorkaddictionalcohol use disorderbig-data sciencebiobankbiomarker identificationclinical diagnosticscognitive neuroscienceconnectomeconvolutional neural networkdata structurediagnostic criteriadisease classificationdisorder subtypeendophenotypeexecutive functionexperiencefallsgenetic analysisgenetic variantgenome wide association studygenome-widegraph neural networkgray matterimaging biomarkerimaging modalityindividual variationinnovationmachine learning modelmultidimensional datamultimodal datamultimodalitynetwork modelsneuralneural correlateneurogeneticsneuroimagingneuromechanismneuropsychiatric disordernovelprecision medicineprogramsresponserisk varianttooltraittreatment responsewhole genome
项目摘要
ABSTRACT
This application represents our ongoing commitment to developing an innovative and interdisciplinary research
program on the classification of substance use disorders (SUDs). This research is achieved through
quantitative analysis of multidimensional data that combine clinical symptoms and diagnoses, imaging
markers, and genotypes. The team has a PI with expertise in computational science and the development and
implementation of innovative statistical algorithms to understand multidimensional data; a PI with extensive
experience in systems, imaging and addiction neuroscience; and a co-I who has expertise in the genetics of
SUDs. Our previous R01 project employed a sample of ~12,000 individuals aggregated from multiple genetic
studies of alcohol and drug dependence to generate SUD subtypes based on clinical symptoms. Because
clinical manifestations are distal endpoints in the biological pathway, the genetic effects identified are often
weak and inconsistent, and consequently difficult to detect even in large samples. As championed by the NIMH
Research Domain Criteria (RDoC) research, the etiologies of psychiatric disorders, including SUDs, can be
fruitfully characterized by dimensional neural features. This project thus extends our ongoing work to include
imaging neural features in the classification of SUDs. Specifically, we will utilize a large database from the UK
Biobank Project that provides both genetic and multi-modality magnetic resonance imaging (MRI) data.
Building on our work with the US Human Connectome Project, we aim in the current project to integrate
clinical, imaging, and genotype data to investigate the neurobiological substrates of SUD diagnostic labels, and
to derive SUD subtypes that are optimized for gene finding. Methodologically, we replace the classic statistical
analysis that is confirmatory and biased to an a priori hypothesis by an approach that emphasizes pattern
discoveries from big data. Our specific aims are to: (I): identify neuroimaging features that represent robust
markers of addiction and differentiate SUD subtypes that can be confirmed by multi-modality evidence; (II)
employ a novel brain connectivity model, on the basis of graph convolutional neural networks, to identify neural
markers that precisely characterize the differences in structural changes and functional circuits related to
SUDs; and (III) derive an innovative machine learning model to identify highly heritable neurobiological
subtypes of SUDs that facilitate investigation of the genetic basis of addiction. We will focus on alcohol and
nicotine use disorders to demonstrate the conceptual and methodological approaches. We believe that, by
providing a productive conceptual and methodological platform to integrate imaging and genetic data to
understand the etiologies of SUDs, this research is highly responsive to the RFA “Leveraging Big Data Science
to Elucidate the Neural Mechanisms of Addiction and SUD.” The machine learning tools developed for this
project will provide an innovative and reliable foundation to enhance the aggregation and analysis of
multidimensional data, and to meet the diagnostic and predictive challenges in mental health research.
抽象的
该应用程序代表了我们对开发创新和跨学科研究的持续承诺
物质使用障碍 (SUD) 分类计划。这项研究是通过
结合临床症状与诊断、影像学的多维数据定量分析
标记和基因型。该团队拥有一位具有计算科学和开发专业知识的 PI
实施创新的统计算法来理解多维数据;具有广泛的 PI
系统、成像和成瘾神经科学方面的经验;以及一位在遗传学方面拥有专业知识的同事
泡沫。我们之前的 R01 项目采用了约 12,000 名个体的样本,这些样本来自多个基因组
对酒精和药物依赖的研究,根据临床症状生成 SUD 亚型。因为
临床表现是生物途径的远端终点,所确定的遗传效应通常是
弱且不一致,因此即使在大样本中也难以检测。由 NIMH 倡导
研究领域标准 (RDoC) 研究,包括 SUD 在内的精神疾病的病因学可以是
维度神经特征卓有成效。因此,该项目扩展了我们正在进行的工作,包括
SUD 分类中的成像神经特征。具体来说,我们将利用来自英国的大型数据库
提供遗传和多模态磁共振成像 (MRI) 数据的生物库项目。
在我们与美国人类连接组项目合作的基础上,我们的目标是在当前项目中整合
临床、影像和基因型数据,以研究 SUD 诊断标签的神经生物学底物,以及
派生针对基因发现进行优化的 SUD 亚型。在方法论上,我们取代了经典的统计方法
通过强调模式的方法对先验假设进行验证和偏向的分析
大数据的发现。我们的具体目标是:(I):识别代表稳健的神经影像特征
成瘾标志物并区分 SUD 亚型,可以通过多模态证据确认; (二)
采用基于图卷积神经网络的新型大脑连接模型来识别神经网络
精确表征相关结构变化和功能电路差异的标记
泡沫; (III) 推导出创新的机器学习模型来识别高度遗传的神经生物学
SUD 的亚型有助于研究成瘾的遗传基础。我们将重点关注酒精和
尼古丁使用障碍来展示概念和方法方法。我们相信,通过
提供一个富有成效的概念和方法平台,将成像和遗传数据整合到
了解 SUD 的病因,这项研究对 RFA“利用大数据科学
阐明成瘾和 SUD 的神经机制。”为此开发的机器学习工具
项目将为加强数据的汇总和分析提供创新和可靠的基础
多维数据,并满足心理健康研究中的诊断和预测挑战。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking.
- DOI:10.1016/j.addicn.2021.100003
- 发表时间:2022-03-01
- 期刊:
- 影响因子:0
- 作者:Chen, Yu;Chaudhary, Shefali;Li, Chiang-Shan R
- 通讯作者:Li, Chiang-Shan R
Win and Loss Responses in the Monetary Incentive Delay Task Mediate the Link between Depression and Problem Drinking.
- DOI:10.3390/brainsci12121689
- 发表时间:2022-12-09
- 期刊:
- 影响因子:3.3
- 作者:Chen, Yu;Dhingra, Isha;Le, Thang M. M.;Zhornitsky, Simon;Zhang, Sheng;Li, Chiang-Shan R.
- 通讯作者:Li, Chiang-Shan R.
Gray matter volumetric correlates of dimensional impulsivity traits in children: Sex differences and heritability.
- DOI:10.1002/hbm.25810
- 发表时间:2022-06-01
- 期刊:
- 影响因子:4.8
- 作者:Chen, Yu;Ide, Jaime S.;Li, Clara S.;Chaudhary, Shefali;Le, Thang M.;Wang, Wuyi;Zhornitsky, Simon;Zhang, Sheng;Li, Chiang-Shan R.
- 通讯作者:Li, Chiang-Shan R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10267217 - 财政年份:2020
- 资助金额:
$ 43.22万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10056455 - 财政年份:2020
- 资助金额:
$ 43.22万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10451612 - 财政年份:2020
- 资助金额:
$ 43.22万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10418671 - 财政年份:2019
- 资助金额:
$ 43.22万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10196980 - 财政年份:2019
- 资助金额:
$ 43.22万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9980496 - 财政年份:2019
- 资助金额:
$ 43.22万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9758034 - 财政年份:2019
- 资助金额:
$ 43.22万 - 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
- 批准号:
9224405 - 财政年份:2017
- 资助金额:
$ 43.22万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9000141 - 财政年份:2015
- 资助金额:
$ 43.22万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9186998 - 财政年份:2015
- 资助金额:
$ 43.22万 - 项目类别:
相似国自然基金
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
相似海外基金
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
- 批准号:
2341006 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
- 批准号:
2305949 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Fellowship Award
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
- 批准号:
24K20168 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23K28389 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341512 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341513 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant














{{item.name}}会员




