Multi-level statistical classification of substance use disorder

物质使用障碍的多级统计分类

基本信息

  • 批准号:
    10668244
  • 负责人:
  • 金额:
    $ 43.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT This application represents our ongoing commitment to developing an innovative and interdisciplinary research program on the classification of substance use disorders (SUDs). This research is achieved through quantitative analysis of multidimensional data that combine clinical symptoms and diagnoses, imaging markers, and genotypes. The team has a PI with expertise in computational science and the development and implementation of innovative statistical algorithms to understand multidimensional data; a PI with extensive experience in systems, imaging and addiction neuroscience; and a co-I who has expertise in the genetics of SUDs. Our previous R01 project employed a sample of ~12,000 individuals aggregated from multiple genetic studies of alcohol and drug dependence to generate SUD subtypes based on clinical symptoms. Because clinical manifestations are distal endpoints in the biological pathway, the genetic effects identified are often weak and inconsistent, and consequently difficult to detect even in large samples. As championed by the NIMH Research Domain Criteria (RDoC) research, the etiologies of psychiatric disorders, including SUDs, can be fruitfully characterized by dimensional neural features. This project thus extends our ongoing work to include imaging neural features in the classification of SUDs. Specifically, we will utilize a large database from the UK Biobank Project that provides both genetic and multi-modality magnetic resonance imaging (MRI) data. Building on our work with the US Human Connectome Project, we aim in the current project to integrate clinical, imaging, and genotype data to investigate the neurobiological substrates of SUD diagnostic labels, and to derive SUD subtypes that are optimized for gene finding. Methodologically, we replace the classic statistical analysis that is confirmatory and biased to an a priori hypothesis by an approach that emphasizes pattern discoveries from big data. Our specific aims are to: (I): identify neuroimaging features that represent robust markers of addiction and differentiate SUD subtypes that can be confirmed by multi-modality evidence; (II) employ a novel brain connectivity model, on the basis of graph convolutional neural networks, to identify neural markers that precisely characterize the differences in structural changes and functional circuits related to SUDs; and (III) derive an innovative machine learning model to identify highly heritable neurobiological subtypes of SUDs that facilitate investigation of the genetic basis of addiction. We will focus on alcohol and nicotine use disorders to demonstrate the conceptual and methodological approaches. We believe that, by providing a productive conceptual and methodological platform to integrate imaging and genetic data to understand the etiologies of SUDs, this research is highly responsive to the RFA “Leveraging Big Data Science to Elucidate the Neural Mechanisms of Addiction and SUD.” The machine learning tools developed for this project will provide an innovative and reliable foundation to enhance the aggregation and analysis of multidimensional data, and to meet the diagnostic and predictive challenges in mental health research.
摘要

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking.
  • DOI:
    10.1016/j.addicn.2021.100003
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Yu;Chaudhary, Shefali;Li, Chiang-Shan R
  • 通讯作者:
    Li, Chiang-Shan R
Win and Loss Responses in the Monetary Incentive Delay Task Mediate the Link between Depression and Problem Drinking.
  • DOI:
    10.3390/brainsci12121689
  • 发表时间:
    2022-12-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Chen, Yu;Dhingra, Isha;Le, Thang M. M.;Zhornitsky, Simon;Zhang, Sheng;Li, Chiang-Shan R.
  • 通讯作者:
    Li, Chiang-Shan R.
Gray matter volumetric correlates of dimensional impulsivity traits in children: Sex differences and heritability.
  • DOI:
    10.1002/hbm.25810
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Chen, Yu;Ide, Jaime S.;Li, Clara S.;Chaudhary, Shefali;Le, Thang M.;Wang, Wuyi;Zhornitsky, Simon;Zhang, Sheng;Li, Chiang-Shan R.
  • 通讯作者:
    Li, Chiang-Shan R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinbo Bi其他文献

Jinbo Bi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinbo Bi', 18)}}的其他基金

Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10267217
  • 财政年份:
    2020
  • 资助金额:
    $ 43.22万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10056455
  • 财政年份:
    2020
  • 资助金额:
    $ 43.22万
  • 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
  • 批准号:
    10451612
  • 财政年份:
    2020
  • 资助金额:
    $ 43.22万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10418671
  • 财政年份:
    2019
  • 资助金额:
    $ 43.22万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    10196980
  • 财政年份:
    2019
  • 资助金额:
    $ 43.22万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9980496
  • 财政年份:
    2019
  • 资助金额:
    $ 43.22万
  • 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
  • 批准号:
    9758034
  • 财政年份:
    2019
  • 资助金额:
    $ 43.22万
  • 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
  • 批准号:
    9224405
  • 财政年份:
    2017
  • 资助金额:
    $ 43.22万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9000141
  • 财政年份:
    2015
  • 资助金额:
    $ 43.22万
  • 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
  • 批准号:
    9186998
  • 财政年份:
    2015
  • 资助金额:
    $ 43.22万
  • 项目类别:

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
  • 批准号:
    2305949
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Fellowship Award
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
  • 批准号:
    23K28389
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341512
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341513
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了