SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
基本信息
- 批准号:10418671
- 负责人:
- 金额:$ 23.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsCaringCellular PhoneClinicalClinical DataCommunitiesDataData SourcesDropsEarly treatmentEcological momentary assessmentFamilyFormulationHealth TechnologyInfluentialsLearningLocationMachine LearningMental DepressionMental HealthMethodsModelingNoiseParticipantPatient MonitoringPatient Self-ReportPatientsPharmaceutical PreparationsPhasePhysiciansPractice GuidelinesPrediction of Response to TherapyProcessProviderPublic HealthQuestionnairesResearchSafetySamplingSelf AdministrationSensorySleepSymptomsSystemTechniquesTimeTreatment outcomeautoencoderclinical decision-makingdeep learningdenoisingdepressive symptomsdesignfeature selectionglobal healthgraphical user interfaceheterogenous datainnovationmHealthmachine learning modelmedication compliancemedication safetymobile sensormultimodalitymultitasknovelpredictive modelingrecruitresponsesensorsymptomatologytooltreatment responseuser-friendly
项目摘要
The current best practice guidelines for treating depression call for close monitoring of patients, and
periodically adjusting treatment as needed. This project will advance personalized depression treatment by
developing an innovative system, DepWatch, that leverages mobile health technologies and machine
learning tools to provide clinicians objective, accurate, and timely assessment of depression symptoms to
assist with their clinical decision making process. Specifically, DepWatch collects sensory data passively
from smartphones and wristbands, without any user interaction, and uses simple user-friendly interfaces to
collect ecological momentary assessments (EMA), medication adherence and safety related data from
patients. The collected data will be fed to machine learning models to be developed in the project to
provide weekly assessment of patient symptom levels and predict the trajectory of treatment response over
time. The assessment and prediction results are then presented using a graphic interface to clinicians to
help them make critical treatment decisions. Our project comprises two studies. Phase I collects sensory
data and other data (e.g., clinical data, EMA, tolerability and safety data) from 250 adult participants with
unstable depression symptomatology. The data thus collected will be used to develop and validate
assessment and prediction models, which will be incorporated into DepWatch system. In Phase II, three
clinicians will use DepWatch to support their clinical decision making process; a total of 50 participants
under treatment by the three participating clinicians will be recruited for the study. A number of innovative
machine learning techniques will be developed. These include a set of new learning formulations to
construct matrix-based longitudinal predictive models, and determine the temporal contingency and the
most influential features, and deep learning based data imputation methods that can handle both problems
of sporadic missing data as well as missing data in an entire view. In addition, multi-task feature learning
models and feature selection techniques will be expanded and refined for this challenging setting of large-scale
heterogeneous data.
目前治疗抑郁症的最佳实践指南要求对患者进行密切监测
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Grant Report on SCH: Personalized Depression Treatment Supported by Mobile Sensor Analytics.
SCH 拨款报告:移动传感器分析支持的个性化抑郁症治疗。
- DOI:10.20900/jpbs.20200010
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kamath,Jayesh;Bi,Jinbo;Russell,Alexander;Wang,Bing
- 通讯作者:Wang,Bing
Automatic Depression Prediction Using Internet Traffic Characteristics on Smartphones.
使用智能手机上的互联网流量特征自动预测抑郁症。
- DOI:10.1016/j.smhl.2020.100137
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yue,Chaoqun;Ware,Shweta;Morillo,Reynaldo;Lu,Jin;Shang,Chao;Bi,Jinbo;Kamath,Jayesh;Russell,Alexander;Bamis,Athanasios;Wang,Bing
- 通讯作者:Wang,Bing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Bi其他文献
Jinbo Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Bi', 18)}}的其他基金
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10267217 - 财政年份:2020
- 资助金额:
$ 23.37万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10056455 - 财政年份:2020
- 资助金额:
$ 23.37万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10451612 - 财政年份:2020
- 资助金额:
$ 23.37万 - 项目类别:
Multi-level statistical classification of substance use disorder
物质使用障碍的多级统计分类
- 批准号:
10668244 - 财政年份:2020
- 资助金额:
$ 23.37万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
10196980 - 财政年份:2019
- 资助金额:
$ 23.37万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9980496 - 财政年份:2019
- 资助金额:
$ 23.37万 - 项目类别:
SCH: Personalized Depression Treatment Support by Mobile Sensor Analytics
SCH:移动传感器分析提供的个性化抑郁症治疗支持
- 批准号:
9758034 - 财政年份:2019
- 资助金额:
$ 23.37万 - 项目类别:
Classifying addictions using machine learning analysis of multidimensional data
使用多维数据的机器学习分析对成瘾进行分类
- 批准号:
9224405 - 财政年份:2017
- 资助金额:
$ 23.37万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9000141 - 财政年份:2015
- 资助金额:
$ 23.37万 - 项目类别:
Quantitative methods to subtype drug dependence and detect novel genetic variants
定量方法对药物依赖性进行分型并检测新的遗传变异
- 批准号:
9186998 - 财政年份:2015
- 资助金额:
$ 23.37万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.37万 - 项目类别:
Continuing Grant














{{item.name}}会员




