Breaking Spatiotemporal Barriers of MR Imaging Technologies to Study Human Brain Function and Neuroenergetics

打破 MR 成像技术的时空障碍来研究人脑功能和神经能量学

基本信息

  • 批准号:
    10455036
  • 负责人:
  • 金额:
    $ 131.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-22 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY    Understanding how neural circuits operate and interconnect at mesoscopic (sub-­millimeter) scale, and how  neuroenergetic  metabolism  and  neurotransmitters  support  brain  function  at  resting  and  working  state  is  essential to brain research and BRAIN Initiative. Magnetic resonance (MR) imaging (MRI), including functional  MRI  (fMRI)  and  in  vivo  MR  spectroscopic  imaging  (MRSI),  is  the  sole  modality  enabling  to  imaging  neural  activity,  functional  connectivity  and  brain  structure  at  cortical  layer  and  column  level,  neuroenergetics  and  neurotransmitters  in  human  brain.  However,  it  remains  challenging  to  address  fundamental  neuroscience  questions requiring much higher sensitivity and spatiotemporal resolution currently unavailable. Increasing MR  field  strength  has  been  the  prevailing  paradigm  to  tackle  the  challenge,  however,  beside  high  cost,  it  poses  a  safety concern from elevated specific absorption rate (SAR) of radiofrequency (RF) power in the brain tissue.     To  address  the  technical  challenges  and  limitations  faced  by  the  MR-­based  imaging  techniques,  we  have  pioneered  an  innovative  and  cost-­effective  engineering  solution  by  introducing  the  ultra-­high  dielectric  constant  (uHDC)  former  incorporated  with  RF  coils  for  large  improvements  of  sensitivity  and  spatiotemporal  resolution  for  fMRI and MRSI, and synergistically reducing SAR at ultrahigh field (UHF). With the NIH R24 funding support, we  have  made  progress  with  promising  results  for  proof  of  concept.  In  this  U01  proposal,  we  will  further  develop  and  integrate  three  advanced  technologies:  i)  fixed  and/or  tunable  uHDC  formers  incorporated  with  advanced  RF coil technology for maximizing MR sensitivity and minimizing SAR;; ii) SPectroscopic Imaging by exploiting  spatiospectral  CorrElation  (SPICE)  technique  for  significantly  boosting  signal-­to-­noise  ratio  (SNR)  and  spatiotemporal  resolution;;  iii)  UHF  MR  technology  for  further  improving  sensitivity  and  spectral  resolution  of  MRSI. The integration of these technologies will achieve cumulative and unprecedented improvements at UHF  and  break  current  barriers  of  spatiotemporal  resolution,  ultimately  enable  i)  ultrahigh-­resolution  fMRI  mapping  of neural activity, circuits and dynamics, and functional connectivity and networks at mesoscopic scale at 3 and  7  tesla(T);;  and  ii)  very  high  resolution  and  whole-­brain  multinuclear  MRSI  for  functional  mapping  of  neuroenergetic and neurotransmitter changes in response to brain stimulation at ultrahigh fields (7T and 10.5T)  with  an  superior  (£5mm  isotropic)  resolution  comparable  to  conventional  fMRI.  The  technology  developments   will  be  carried  out  by  a  consortium  among  interdisciplinary  researchers  from  University  of  Minnesota,  Penn  State  University  and  University  of  Illinois  at  Urbana-­Champaign.  Success  of  this  project  will  usher  the  next   generation  of  MR-­based  multimodal  neuroimaging  technology  offering  superior  spatiotemporal  resolution  fully  transformative  for  broad  brain  research,  and  generate  comprehensive  and  high  fidelity  database  of  healthy  human brain that can be shared by scientific community.
项目摘要 了解神经回路如何在介观(亚毫米)尺度上运作和互连,以及如何 神经能量代谢和神经递质在休息和工作状态下支持大脑功能, 磁共振(MR)成像(MRI),包括功能性磁共振成像(MRI), MRI(fMRI)和体内MR光谱成像(MRSI)是能够对神经系统进行成像的唯一模式。 活动,功能连接和大脑结构在皮层层和列水平,神经能量学和 人类大脑中的神经递质。然而,解决基础神经科学仍然具有挑战性 需要更高的灵敏度和时空分辨率的问题目前不可用。 场强一直是解决这一挑战的主流范例,然而,除了高成本之外,它还提出了一个 脑组织中射频(RF)功率比吸收率(SAR)升高的安全性问题。 为了解决基于MR的成像技术所面临的技术挑战和局限性,我们 通过引入超高介电常数, (uHDC)形成器与RF线圈结合,大大提高了灵敏度和时空分辨率, fMRI和MRSI,并协同降低SAR在超高频(UHF)。与美国国立卫生研究院R24的资金支持,我们 在概念验证方面取得了可喜的进展。在U01提案中,我们将进一步开发 并集成三种先进技术:i)固定和/或可调谐uHDC形成器, RF线圈技术,用于最大化MR灵敏度和最小化SAR; 空间谱相关(SPICE)技术显著提高信噪比(SNR), iii)UHF MR技术,用于进一步提高 这些技术的集成将实现累积的和前所未有的改善,在超高频 并打破目前时空分辨率的障碍,最终使i)100 - 1000分辨率的功能磁共振成像映射 神经活动,电路和动力学,以及功能连接和网络在中观尺度在3和 7特斯拉(T); ii)极高分辨率和全脑多核MRSI,用于功能定位, 在磁场(7T和10.5T)下对脑刺激作出反应的神经能量和神经递质变化 与传统的功能磁共振成像相比,具有上级分辨率(± 5mm各向同性)。 将由来自宾夕法尼亚州明尼苏达大学的跨学科研究人员组成的联盟进行 州立大学和伊利诺伊大学厄巴纳分校尚潘。这个项目的成功将迎来下一个 一代基于MR的多模态神经成像技术,充分提供上级时空分辨率 为广泛的大脑研究带来变革,并生成全面和高保真的健康数据库。 科学界可以共享的人类大脑。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
  • 批准号:
    10564824
  • 财政年份:
    2023
  • 资助金额:
    $ 131.5万
  • 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
  • 批准号:
    10714863
  • 财政年份:
    2023
  • 资助金额:
    $ 131.5万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10601180
  • 财政年份:
    2022
  • 资助金额:
    $ 131.5万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10665804
  • 财政年份:
    2022
  • 资助金额:
    $ 131.5万
  • 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
  • 批准号:
    10525401
  • 财政年份:
    2022
  • 资助金额:
    $ 131.5万
  • 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
  • 批准号:
    10414184
  • 财政年份:
    2022
  • 资助金额:
    $ 131.5万
  • 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
  • 批准号:
    10226322
  • 财政年份:
    2020
  • 资助金额:
    $ 131.5万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10043972
  • 财政年份:
    2020
  • 资助金额:
    $ 131.5万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10268184
  • 财政年份:
    2020
  • 资助金额:
    $ 131.5万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10463737
  • 财政年份:
    2020
  • 资助金额:
    $ 131.5万
  • 项目类别:

相似海外基金

REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
  • 批准号:
    10931180
  • 财政年份:
    2023
  • 资助金额:
    $ 131.5万
  • 项目类别:
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
  • 批准号:
    10931181
  • 财政年份:
    2023
  • 资助金额:
    $ 131.5万
  • 项目类别:
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS WITH THE BROAD INSTITUTE
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑计划细胞阿特拉斯网络 (BICAN) 与布罗德研究所签订测序核心合同
  • 批准号:
    10931182
  • 财政年份:
    2023
  • 资助金额:
    $ 131.5万
  • 项目类别:
REREQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE NY GENOME CENTER
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与纽约基因组中心的测序核心合同 RFP 75N95022R00031
  • 批准号:
    10931190
  • 财政年份:
    2023
  • 资助金额:
    $ 131.5万
  • 项目类别:
Organoid quality control using the Brain Initiative Cell Census Network
使用 Brain Initiative Cell Census Network 进行类器官质量控制
  • 批准号:
    572467-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 131.5万
  • 项目类别:
    University Undergraduate Student Research Awards
BRAIN Initiative: Hierarchical Event Descriptors (HED): a system to characterize events in neurobehavioral data
BRAIN Initiative:分层事件描述符 (HED):表征神经行为数据事件的系统
  • 批准号:
    10480619
  • 财政年份:
    2022
  • 资助金额:
    $ 131.5万
  • 项目类别:
BRAINShare: Sharing Data in BRAIN Initiative Studies
BRAINShare:共享 BRAIN 计划研究中的数据
  • 批准号:
    10450824
  • 财政年份:
    2021
  • 资助金额:
    $ 131.5万
  • 项目类别:
Integrative analysis of genomics and imaging data from the BRAIN Initiative and other public data sources
对来自 BRAIN Initiative 和其他公共数据源的基因组学和成像数据进行综合分析
  • 批准号:
    10190025
  • 财政年份:
    2021
  • 资助金额:
    $ 131.5万
  • 项目类别:
BRAIN Initiative: Assessing development of event-related cortical network dynamics
BRAIN Initiative:评估事件相关皮层网络动态的发展
  • 批准号:
    10190670
  • 财政年份:
    2021
  • 资助金额:
    $ 131.5万
  • 项目类别:
BRAINShare: Sharing Data in BRAIN Initiative Studies
BRAINShare:共享 BRAIN 计划研究中的数据
  • 批准号:
    10609523
  • 财政年份:
    2021
  • 资助金额:
    $ 131.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了