Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases

重叠暴发和新暴发疾病的自动监测

基本信息

项目摘要

Project Summary / Abstract This project will develop and evaluate new methods for automated detection and characterization of infectious respiratory diseases. The methods will be novel in their ability to detect and characterize (1) multiple, overlapping outbreaks of known diseases, which is a situation that occurs commonly, (2) an outbreak of a new, emerging disease, which can be dangerous, and (3) a combination of 1 and 2 occurring at the same time. The ability to detect a new disease early, in the context of other common outbreaks occurring, may be particularly important if the disease causes serious illness and spreads rapidly in the population. The new methods can also use a wide variety of data to perform outbreak detection and characterization, including emergency department reports, laboratory results, retail thermometer sales in the region, and local health-related tweets. These new methods will be built upon the framework of an existing Bayesian, probabilistic system, which the investigators have developed. This system takes as input data used to perform outbreak detection and characterization, and it outputs the probabilities of different possible disease outbreaks that may be occurring, as well as their characteristics, such as their probable start times and epidemiological curves. A unique aspect of the system is its ability to use data from individual patient clinical reports, such as emergency department reports. The system applies natural language processing to the reports to derive a set of symptoms, signs, and other findings. It then uses these findings and probabilistic disease models to derive a probability distribution over the diseases for each patient. For the many patients seen in the recent past, the system uses their probability distributions as evidence in detecting and characterizing disease outbreaks. The project will be evaluated using simulated data and real data from Allegheny County, Pennsylvania. It will focus on four common outbreak diseases, namely, influenza A, influenza B, respiratory syncytial virus (RSV), and adenovirus. The evaluation will examine how well the system can (1) detect and characterize multiple overlapping outbreaks of disease, (2) detect a new outbreak disease and create an accurate clinical description of it (using a leave-one-out cross validation approach), and (3) use a variety of data types to improve outbreak detection and characterization. The innovation being advanced by this research is a novel, integrated, probabilistic approach for the early and accurate detection of disease outbreaks that threaten public health. The proposed approach has significant potential to improve the information available to clinicians and public health officials, which can be expected to improve clinical and public health decision making, and ultimately to improve population health.
项目摘要/摘要 该项目将开发和评估自动检测和表征传染性疾病的新方法。 呼吸道疾病。这些方法将在它们检测和表征(1)多个, 已知疾病的重叠暴发,这是一种常见的情况,(2)新的、 新出现的疾病,这可能是危险的,以及(3)1和2的组合同时发生。这个 在发生其他常见疫情的情况下,及早发现新疾病的能力可能尤其重要 如果这种疾病导致严重疾病并在人群中迅速传播,这一点很重要。新方法可以 还使用各种数据来执行疫情检测和定性,包括紧急情况 卫生部的报告,实验室结果,该地区的零售温度计销售,以及当地与健康相关的推文。 这些新方法将建立在现有贝叶斯概率系统的框架上,该系统 调查人员已经开发出。该系统将用于执行疫情检测和 特征,并输出可能正在发生的不同可能的疾病爆发的概率, 以及它们的特征,如它们的可能开始时间和流行病学曲线。独一无二的一面 该系统的特点是能够使用来自个别患者临床报告的数据,例如急诊科 报告。系统将自然语言处理应用于报告,以得出一组症状、体征和 其他发现。然后,它使用这些发现和概率疾病模型来推导概率分布 关于每个病人的疾病。对于最近看到的许多患者,该系统使用他们的 概率分布作为检测和表征疾病暴发的证据。 该项目将使用宾夕法尼亚州阿勒格尼县的模拟数据和真实数据进行评估。会的 重点关注四种常见的暴发疾病,即甲型流感、乙型流感、呼吸道合胞病毒、 和腺病毒。评估将检查该系统能够(1)检测和表征多个 重叠的疾病暴发,(2)检测新的暴发疾病并创建准确的临床 描述它(使用留一交叉验证方法),以及(3)使用各种数据类型来 改进疫情检测和定性。 本研究提出的创新是一种新颖的、集成的、概率的方法,用于早期和 准确检测威胁公共健康的疾病暴发。提出的方法具有重要的意义 有可能改善临床医生和公共卫生官员可获得的信息,这可以预期 改善临床和公共卫生决策,最终改善人口健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GREGORY F. COOPER其他文献

GREGORY F. COOPER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GREGORY F. COOPER', 18)}}的其他基金

Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
  • 批准号:
    10705264
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
  • 批准号:
    10502411
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10653930
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10094371
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
  • 批准号:
    7860710
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    8641014
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    8912480
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    9278178
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    9095389
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
  • 批准号:
    7634045
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:

相似海外基金

cGAS-STING Pathway Targeting Replicative Adenoviruses with CD46 Tropism and AFP Promoter Conditional Replication Restriction for the Treatment of Hepatocellular Carcinoma
cGAS-STING 通路靶向具有 CD46 趋向性和 AFP 启动子的复制腺病毒条件性复制限制用于治疗肝细胞癌
  • 批准号:
    10436626
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
  • 批准号:
    10557162
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Molecular therapy of replication-competent adenoviruses targeting characteristic gene mutations found in mesothelioma
针对间皮瘤中发现的特征基因突变的具有复制能力的腺病毒的分子疗法
  • 批准号:
    21K08199
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
  • 批准号:
    10330464
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Structural characterization of nucleoprotein cores of human adenoviruses
人腺病毒核蛋白核心的结构表征
  • 批准号:
    9807741
  • 财政年份:
    2019
  • 资助金额:
    $ 33.79万
  • 项目类别:
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
  • 批准号:
    41625-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Discovery Grants Program - Individual
The therapeutic strategies with augmented replications of oncolytic adenoviruses for malignant mesothelioma
溶瘤腺病毒增强复制治疗恶性间皮瘤的治疗策略
  • 批准号:
    18K15937
  • 财政年份:
    2018
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
  • 批准号:
    41625-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the effects of nutrient deprivation on T cells and oncolytic adenoviruses, in order to create immune activators for tumour therapy
探索营养剥夺对 T 细胞和溶瘤腺病毒的影响,以创造用于肿瘤治疗的免疫激活剂
  • 批准号:
    1813152
  • 财政年份:
    2016
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Studentship
Research on detection of novel adenoviruses by genetic methods
新型腺病毒的基因检测研究
  • 批准号:
    16K09118
  • 财政年份:
    2016
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了