Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
基本信息
- 批准号:10502411
- 负责人:
- 金额:$ 61.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Respiratory Distress SyndromeAcute respiratory failureAwardBayesian MethodBig DataCOVID-19 patientCaringClinical TrialsCompanionsConduct Clinical TrialsCost MeasuresCritical IllnessDataData ScienceData SetDeteriorationElectronic Health RecordEnrollmentEquilibriumEventFundingGenerationsGuidelinesHealth systemHospital MortalityIndividualInterventionLearningLungMeasuresMechanical ventilationMethodsModelingMonoclonal Antibody TherapyNational Heart, Lung, and Blood InstituteOperative Surgical ProceduresOutcomePatientsPerioperativePopulationPostoperative PeriodPrediction of Response to TherapyProne PositionPublic HealthRandomizedRandomized Clinical TrialsResearch PriorityRespiratory FailureSARS-CoV-2 infectionSelection for TreatmentsStatistical MethodsStrategic visionSystemTimeTrainingTranslational ResearchTreatment outcomeUnited StatesUnited States National Institutes of HealthVisionbaseclinical carecostdesignhigh riskimprovedimproved outcomein silicoindividualized medicineinnovationmortalitynovelpersonalized medicinepersonalized predictionspreventresponsetreatment as usualtreatment effecttreatment responseventilationworking group
项目摘要
Abstract
More than 790,000 patients undergo mechanical ventilation for acute respiratory failure (ARF) in the United
States each year at a cost of $27 billion. The in-hospital mortality for these patients is nearly 35%, and for
patients with critical illness, such as acute respiratory distress syndrome (ARDS), mortality can approach 50%.
In some patients, guideline-appropriate care with lung-protective ventilation or prone positioning will save lives,
yet in many others, an individualized treatment is elusive. There is a need for advances in leveraging
opportunities in data science to improve outcomes from respiratory failure. The primary method for generating
new evidence is the randomized clinical trial (RCT). Yet they are often costly, take many years, and can be
slow to accelerate learning and implementation at the bedside. In addition, RCTs usually enroll a moderate
number of patients at high cost (100 to 1000s) and measure a limited range of covariates (10 to 100s). Thus,
they do not lead to prediction of highly individualized treatment effects, as called for by the NHLBI Working
Group on Research Priorities.
In contrast, real-world evidence from electronic health records (EHRs) includes many patients (often millions)
and covariates (often 1000s). They are inherently generalizable, less costly, and less timely to acquire than
conducting RCTs. However, the estimation of treatment effects from EHR data is often biased due to
confounding, which occurs when a treatment and its effect(s) are both causally influenced by one or more
events. This project uses two Specific Aims to solve these challenges. Aim 1 proposes to develop and evaluate
a new method for making individualized predictions of treatment effects using data from RCTs and EHRs. It
uses “embedded” RCTs in which the clinical trial occurs within the context of usual care of a health system.
The embedded RCT data are applied to control for confounding when using EHR data to predict treatment
effects. Aim 2 will apply these methods to two embedded RCTs at UPMC that are studying treatments that
may help prevent ARF. The OPTIMISE C-19 trial is studying monoclonal antibody therapy for non-hospitalized
patients with SARS-CoV-2 infection. The PeriOp trial will be studying perioperative interventions to improve
post-operative outcomes after major surgery. The hypothesis to be investigated is that the proposed new
methods will predict the effects of treatment on acute respiratory failure and other outcomes more accurately
than will using the clinical trial or the EHR data alone. Such results would provide support that these methods
yield individualized predictions of treatment effects that can inform clinical care to help prevent ARF.
摘要
在美国,超过790,000名患者因急性呼吸衰竭(ARF)接受机械通气
每年花费270亿美元。这些患者的住院死亡率接近35%,
危重病患者,如急性呼吸窘迫综合征(ARDS),死亡率可接近50%。
在一些患者中,按照指南进行肺保护性通气或俯卧位护理可以挽救生命,
然而,在许多其他国家,个性化治疗是难以捉摸的。需要在杠杆化方面取得进展
数据科学的机会,以改善呼吸衰竭的结果。生成的主要方法
新的证据是随机临床试验(RCT)。然而,它们往往成本高昂,需要多年时间,而且可能会
在床边加快学习和实施的速度。此外,随机对照试验通常招募中度
高成本的患者数量(100到1000),并测量有限范围的协变量(10到100)。因此,在本发明中,
它们不会像NHLBI工作组所呼吁的那样预测高度个性化的治疗效果
研究优先事项小组。
相比之下,来自电子健康记录(EHR)的真实世界证据包括许多患者(通常为数百万)
和协变量(通常为1000)。它们本质上是可推广的,成本较低,获得的时间较短,
进行RCT。然而,EHR数据的治疗效果估计往往是有偏差的,
混杂,当治疗及其效应均受到一种或多种因素的因果影响时发生
事件该项目使用两个特定目标来解决这些挑战。目标1:开发和评估
一种新的方法,使用来自RCT和EHR的数据对治疗效果进行个性化预测。它
使用“嵌入式”随机对照试验,其中临床试验发生在卫生系统的常规护理背景下。
当使用EHR数据预测治疗时,嵌入的RCT数据用于控制混杂因素
方面的影响.目标2将这些方法应用于UPMC的两个嵌入式RCT,这些RCT正在研究治疗方法,
可能有助于预防ARF。OPTIMISE C-19试验正在研究非住院患者的单克隆抗体治疗
SARS-CoV-2感染者。PeriOp试验将研究围手术期干预,以改善
大手术后的术后结果。要研究的假设是,
这些方法将更准确地预测急性呼吸衰竭的治疗效果和其他结果
比单独使用临床试验或EHR数据更有效。这些结果将支持这些方法
产生治疗效果的个体化预测,可以为临床护理提供信息,以帮助预防ARF。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY F. COOPER其他文献
GREGORY F. COOPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY F. COOPER', 18)}}的其他基金
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
- 批准号:
10705264 - 财政年份:2022
- 资助金额:
$ 61.32万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10460909 - 财政年份:2021
- 资助金额:
$ 61.32万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10653930 - 财政年份:2021
- 资助金额:
$ 61.32万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10094371 - 财政年份:2021
- 资助金额:
$ 61.32万 - 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
- 批准号:
7860710 - 财政年份:2009
- 资助金额:
$ 61.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
8641014 - 财政年份:2009
- 资助金额:
$ 61.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
8912480 - 财政年份:2009
- 资助金额:
$ 61.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
9278178 - 财政年份:2009
- 资助金额:
$ 61.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
9095389 - 财政年份:2009
- 资助金额:
$ 61.32万 - 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
- 批准号:
7634045 - 财政年份:2009
- 资助金额:
$ 61.32万 - 项目类别:
相似海外基金
Novel Digital Methods to Evaluate Functional and Pulmonary Outcomes following Pediatric Acute Respiratory Failure
评估小儿急性呼吸衰竭后功能和肺部结果的新型数字方法
- 批准号:
10724042 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Optimizing Time-Limited Trials of Mechanical Ventilation in Acute Respiratory Failure: A Mixed Methods Observational Study
优化急性呼吸衰竭机械通气的限时试验:混合方法观察研究
- 批准号:
10633823 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Use of Inter-Hospital Transfer Services in Critical Illness and Acute Respiratory Failure
在危重疾病和急性呼吸衰竭中使用医院间转运服务
- 批准号:
10739060 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Strengthening implementation science in Acute Respiratory Failure using multilevel analysis of existing data
利用现有数据的多级分析加强急性呼吸衰竭的实施科学
- 批准号:
10731311 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Health expectations after acute respiratory failure in survivor-care partner dyads
幸存者护理伙伴二人组急性呼吸衰竭后的健康期望
- 批准号:
10732929 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Temporal trends in quality indicators of palliative care for patients with chronic illness hospitalized with acute respiratory failure
因急性呼吸衰竭住院的慢性病患者姑息治疗质量指标的时间趋势
- 批准号:
10622756 - 财政年份:2023
- 资助金额:
$ 61.32万 - 项目类别:
Association of patient characteristics and antibiotic timing with the development of acute respiratory failure in hospital-acquired sepsis
患者特征和抗生素使用时机与医院获得性脓毒症急性呼吸衰竭发展的关系
- 批准号:
10313769 - 财政年份:2022
- 资助金额:
$ 61.32万 - 项目类别:
Financial Hardship among Patients with Acute Respiratory Failure and their Family Member Caregivers: Understanding the Impact on Patient- and Family- Centered Outcomes
急性呼吸衰竭患者及其家庭成员护理人员的经济困难:了解对以患者和家庭为中心的结果的影响
- 批准号:
10413457 - 财政年份:2022
- 资助金额:
$ 61.32万 - 项目类别:














{{item.name}}会员




