Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records

使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果

基本信息

项目摘要

Abstract More than 790,000 patients undergo mechanical ventilation for acute respiratory failure (ARF) in the United States each year at a cost of $27 billion. The in-hospital mortality for these patients is nearly 35%, and for patients with critical illness, such as acute respiratory distress syndrome (ARDS), mortality can approach 50%. In some patients, guideline-appropriate care with lung-protective ventilation or prone positioning will save lives, yet in many others, an individualized treatment is elusive. There is a need for advances in leveraging opportunities in data science to improve outcomes from respiratory failure. The primary method for generating new evidence is the randomized clinical trial (RCT). Yet they are often costly, take many years, and can be slow to accelerate learning and implementation at the bedside. In addition, RCTs usually enroll a moderate number of patients at high cost (100 to 1000s) and measure a limited range of covariates (10 to 100s). Thus, they do not lead to prediction of highly individualized treatment effects, as called for by the NHLBI Working Group on Research Priorities. In contrast, real-world evidence from electronic health records (EHRs) includes many patients (often millions) and covariates (often 1000s). They are inherently generalizable, less costly, and less timely to acquire than conducting RCTs. However, the estimation of treatment effects from EHR data is often biased due to confounding, which occurs when a treatment and its effect(s) are both causally influenced by one or more events. This project uses two Specific Aims to solve these challenges. Aim 1 proposes to develop and evaluate a new method for making individualized predictions of treatment effects using data from RCTs and EHRs. It uses “embedded” RCTs in which the clinical trial occurs within the context of usual care of a health system. The embedded RCT data are applied to control for confounding when using EHR data to predict treatment effects. Aim 2 will apply these methods to two embedded RCTs at UPMC that are studying treatments that may help prevent ARF. The OPTIMISE C-19 trial is studying monoclonal antibody therapy for non-hospitalized patients with SARS-CoV-2 infection. The PeriOp trial will be studying perioperative interventions to improve post-operative outcomes after major surgery. The hypothesis to be investigated is that the proposed new methods will predict the effects of treatment on acute respiratory failure and other outcomes more accurately than will using the clinical trial or the EHR data alone. Such results would provide support that these methods yield individualized predictions of treatment effects that can inform clinical care to help prevent ARF.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GREGORY F. COOPER其他文献

GREGORY F. COOPER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GREGORY F. COOPER', 18)}}的其他基金

Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
  • 批准号:
    10502411
  • 财政年份:
    2022
  • 资助金额:
    $ 60.31万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10460909
  • 财政年份:
    2021
  • 资助金额:
    $ 60.31万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10653930
  • 财政年份:
    2021
  • 资助金额:
    $ 60.31万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10094371
  • 财政年份:
    2021
  • 资助金额:
    $ 60.31万
  • 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
  • 批准号:
    7860710
  • 财政年份:
    2009
  • 资助金额:
    $ 60.31万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    8641014
  • 财政年份:
    2009
  • 资助金额:
    $ 60.31万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    8912480
  • 财政年份:
    2009
  • 资助金额:
    $ 60.31万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    9278178
  • 财政年份:
    2009
  • 资助金额:
    $ 60.31万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    9095389
  • 财政年份:
    2009
  • 资助金额:
    $ 60.31万
  • 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
  • 批准号:
    7634045
  • 财政年份:
    2009
  • 资助金额:
    $ 60.31万
  • 项目类别:

相似海外基金

Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Research Grant
The Association Between Aging, Inflammation, and Clinical Outcomes in Acute Respiratory Distress Syndrome
衰老、炎症与急性呼吸窘迫综合征临床结果之间的关联
  • 批准号:
    10722669
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
Sedatives Pharmacology in Acute Respiratory Distress Syndrome- SPA
急性呼吸窘迫综合征中的镇静药理学 - SPA
  • 批准号:
    491387
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Fellowship Programs
New mechanism-based TREM-1 therapy for acute respiratory distress syndrome
基于新机制的 TREM-1 疗法治疗急性呼吸窘迫综合征
  • 批准号:
    10678788
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
Great Lakes Clinical Center of the Acute Respiratory Distress Syndrome, Pneumonia and Sepsis (APS) Consortium
急性呼吸窘迫综合征、肺炎和败血症 (APS) 联盟五大湖临床中心
  • 批准号:
    10646578
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
Effect of ADAMTS13 on pathogenesis of acute respiratory distress syndrome
ADAMTS13 对急性呼吸窘迫综合征发病机制的影响
  • 批准号:
    23K08447
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Synthetic Biology-Derived Microbiome Therapeutic to Treat Viral-Induced Acute Respiratory Distress Syndrome (ARDS)
一种新型合成生物学衍生的微生物疗法,可治疗病毒引起的急性呼吸窘迫综合征(ARDS)
  • 批准号:
    10601865
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
Development of drug therapy targeting ferroptosis, iron-dependent cell death for acute respiratory distress syndrome.
开发针对铁死亡(急性呼吸窘迫综合征的铁依赖性细胞死亡)的药物疗法。
  • 批准号:
    23K08360
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sustainable Implementation of Prone Positioning for the Acute Respiratory Distress Syndrome
持续实施俯卧位治疗急性呼吸窘迫综合征
  • 批准号:
    10722194
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
Point-of-care system to assess the risk of trauma-induced acute respiratory distress syndrome
用于评估创伤引起的急性呼吸窘迫综合征风险的护理点系统
  • 批准号:
    10594793
  • 财政年份:
    2023
  • 资助金额:
    $ 60.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了