Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
基本信息
- 批准号:8912480
- 负责人:
- 金额:$ 58.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchivesAreaCaringClinicalClinical DataClinical ManagementClinical TrialsComplicationComputerized Medical RecordComputersCritical CareCritical IllnessDataDatabasesDecision MakingDetectionDevelopmentElectronicsEnvironmentEvaluationEventFeedbackFundingHealthHealth PersonnelHealthcareHospitalsImmunosuppressive AgentsIndividualInformation SystemsInpatientsIntensive Care UnitsKnowledgeLaboratoriesMachine LearningMedicalMedical ErrorsMedicineMethodologyMethodsModelingMonitorOperative Surgical ProceduresOralOutpatientsPatient CarePatientsPatternPerformancePharmaceutical PreparationsPhysiciansPlayPractice ManagementProductionReal-Time SystemsRecordsRelative (related person)ResearchResearch PersonnelSignal TransductionSolutionsStreamSystemTacrolimusTechniquesTestingTimeUnited States National Institutes of HealthWorkbasebiomedical informaticsclinical careclinical practicecomputer sciencedesignimprovedknowledge baseliver transplantationmultidisciplinaryprototype
项目摘要
DESCRIPTION (provided by applicant): Timely detection of severe patient conditions or concerning events and their mitigation remains an important problem in clinical practice. This is especially true in the critically ill patient. Typical computer-based detection methods developed for this purpose rely on the use of clinical knowledge, such as expert-derived rules, that are incorporated into monitoring and alerting systems. However, it is often time-consuming, costly, and difficult to extract and implement such knowledge in existing monitoring systems. The research work in this proposal offers computational, rather than expert-based, solutions that build alert systems from data stored in patient data repositories, such as electronic medical records. Briefly, our approach uses advanced machine learning algorithms to identify unusual clinical management patterns in individual patients, relative to patterns associated with comparable patients, and raises an alert signaling this discrepancy. Our previous studies provide support that such deviations indicate clinically important events at false alert rates belo 50%, which is very promising. We propose to further improve the new methodology, and build a real-time monitoring and alerting system integrated with production electronic medical records. We propose an evaluation of the system using physicians' assessment of alerts raised by our real-time system for intensive-care unit (ICU) patient cases. The project investigators comprise a multidisciplinary team with expertise in critical care medicine, computer science, biomedical informatics, statistical machine learning, knowledge based systems, and clinical data repositories.
描述(由申请人提供):及时检测严重患者状况或相关事件及其缓解仍然是临床实践中的一个重要问题。这在重症患者中尤其如此。为此目的开发的典型的基于计算机的检测方法依赖于临床知识的使用,例如专家导出的规则,这些规则被并入监测和警报系统中。然而,在现有的监测系统中提取和实施这些知识往往是耗时、昂贵和困难的。该提案中的研究工作提供了计算而不是基于专家的解决方案,这些解决方案可以从存储在患者数据存储库中的数据(如电子病历)中构建警报系统。简而言之,我们的方法使用先进的机器学习算法来识别个体患者中不寻常的临床管理模式,相对于与可比患者相关的模式,并发出警报,表明这种差异。我们之前的研究支持此类偏离表明在低于50%的错误警报率下发生临床重要事件,这是非常有希望的。我们建议进一步改进新的方法,并建立一个实时监控和报警系统集成与生产电子病历。我们提出了一个评估系统使用医生的评估警报提出了我们的实时系统重症监护病房(ICU)的病人的情况。项目研究人员组成了一个多学科团队,拥有重症监护医学,计算机科学,生物医学信息学,统计机器学习,基于知识的系统和临床数据存储库的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY F. COOPER其他文献
GREGORY F. COOPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY F. COOPER', 18)}}的其他基金
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
- 批准号:
10705264 - 财政年份:2022
- 资助金额:
$ 58.32万 - 项目类别:
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
- 批准号:
10502411 - 财政年份:2022
- 资助金额:
$ 58.32万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10460909 - 财政年份:2021
- 资助金额:
$ 58.32万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10653930 - 财政年份:2021
- 资助金额:
$ 58.32万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10094371 - 财政年份:2021
- 资助金额:
$ 58.32万 - 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
- 批准号:
7860710 - 财政年份:2009
- 资助金额:
$ 58.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
8641014 - 财政年份:2009
- 资助金额:
$ 58.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
9278178 - 财政年份:2009
- 资助金额:
$ 58.32万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
9095389 - 财政年份:2009
- 资助金额:
$ 58.32万 - 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
- 批准号:
7634045 - 财政年份:2009
- 资助金额:
$ 58.32万 - 项目类别:
相似海外基金
Sediment Drilling Facility for environmental and genetic archives
环境和遗传档案沉积物钻探设施
- 批准号:
LE240100064 - 财政年份:2024
- 资助金额:
$ 58.32万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Aerial Archives of Race and American-Occupied Japan
种族和美国占领的日本的航空档案
- 批准号:
24K03721 - 财政年份:2024
- 资助金额:
$ 58.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding biosphere-geosphere coevolution through carbonate-associated phosphate, community archives, and open-access education in rural schools
职业:通过碳酸盐相关磷酸盐、社区档案和农村学校的开放教育了解生物圈-地圈协同进化
- 批准号:
2338055 - 财政年份:2024
- 资助金额:
$ 58.32万 - 项目类别:
Continuing Grant
Designing a Bridging Model Using Learning Content Information LOD to Link School Education and Digital Archives
使用学习内容信息 LOD 设计桥接模型来链接学校教育和数字档案
- 批准号:
23H03695 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Doris Lessing's Archives: Communism, Decolonisation and Literary Practice
多丽丝·莱辛档案:共产主义、非殖民化和文学实践
- 批准号:
2888789 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Studentship
Building a sustainable future for anthropology's archives: Researching primary source data lifecycles, infrastructures, and reuse
为人类学档案构建可持续的未来:研究主要源数据生命周期、基础设施和重用
- 批准号:
2314762 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Standard Grant
Reading Writing Lives: Publishing & Preserving Australian Literary Archives
阅读写作生活:出版
- 批准号:
DP230101797 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Discovery Projects
Integrated High-Definition Visualization of Digital Archives for Borobudur Temple
婆罗浮屠寺数字档案集成高清可视化
- 批准号:
22KJ3026 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research on multilingual data integration for digital archives of Japanese culture
日本文化数字档案多语言数据集成研究
- 批准号:
23K11780 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Preliminary Study for Constructing International Network of Image Archives on Afghan Cultural Heritages
构建阿富汗文化遗产国际图像档案网络的初步研究
- 批准号:
23K00915 - 财政年份:2023
- 资助金额:
$ 58.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




