Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
基本信息
- 批准号:10460612
- 负责人:
- 金额:$ 65.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAdoptedAdoptionAnxietyArchitectureAttention deficit hyperactivity disorderAwardBrainBrain imagingClinical DataCommunicationCommunitiesComputer softwareComputing MethodologiesDataData AnalysesData SetDevelopmentDiagnosticDimensionsEngineeringEnsureEnvironmentFunctional Magnetic Resonance ImagingFutureHumanImageIndividualLearningMagnetic Resonance ImagingMeasurementMeasuresMental DepressionMethodsModelingNatureNeuronsNeurosciencesPaperPennsylvaniaPersonsPhiladelphiaProceduresPsychopathologyPsychosesReproducibilityResearchSiteSource CodeStatistical ModelsSupervisionSymptomsSystemTechniquesUniversitiesWorkYouthanalytical toolbasecognitive developmentcohortcomputational platformconnectomedata harmonizationdata structuredeep learningdeep learning algorithmdeep neural networkhuman dataimage processingimprovedinterestlarge scale datalearning strategymultiple datasetsmutual learningnetwork architecturenetwork modelsneural network architectureneuroimagingneuropsychiatrynovelnovel diagnosticsopen sourceoutcome predictionpersonalized medicineportabilitypredictive modelingprogramspsychiatric symptomrecurrent neural networkrelating to nervous systemsuccesstooltranslational scientistuser-friendly
项目摘要
ABSTRACT
Intrinsic functional connectivity magnetic resonance imaging is a powerful tool to study the organization of
functional networks (FNs) in the human brain. Rich and accumulating evidence demonstrates that FNs
undergo predictable normative development in youth, and that abnormal development is associated with
diverse psychopathology. Recent work based on advances in image analytics has established that FNs are in
fact person-specific. When paired with large-scale neuroimaging datasets, person-specific FNs provide
unprecedented translational opportunities for the development of new diagnostics that could guide
personalized treatments for neuropsychiatric illnesses. However, the translational promise of person-specific
FNs is at present hindered by several obstacles. First, current methods compute personalized FNs at a specific
scale, despite clear evidence that the brain is a multi-scale system with a hierarchical functional organization.
Second, to enforce correspondence across different subjects personalized FNs are typically computed under
certain constraints, which may yield biased results. Third, deep learning has achieved mixed success in
neuroimaging data analysis partially due to the fact that ad-hoc network architecture is typically adopted and
feature learning capability is often deprived by adopting pre-engineered rather than learned features. Fourth, to
correct site effects of neuroimaging measures from multiple datasets of large-scale neuroimaging studies
current methods typically attempt to harmonize data prior to statistical modeling, resulting in loss of valuable
information. Fifth, longitudinal neuroimaging and clinical data are increasingly available, but effective analytic
tools for longitudinal data are scarce. Last but not least, deep learning algorithms have been developed to
analyze fcMRI data but are often released as poorly documented source code, limiting both reproducibility and
adoption by translational researchers. In this application, we build on the success of the prior award period to
address these limitations by developing, validating, and disseminating tools that characterize brain functional
organization at an individual subject level. We will leverage complementary large-scale studies of brain
development to validate our methods and delineate how abnormal development of FNs is associated with
major dimensions of psychopathology in youth, including depression, anxiety, psychosis, and ADHD-spectrum
symptoms. Specifically, we will develop novel methods to 1) accurately identify bias-free personalized FNs with
a multiscale hierarchical organization; 2) robustly predict psychiatric symptom dimensions using personalized
FNs with optimized deep neural network architecture and integrated site-effect correction, and 3) effectively
model longitudinal data of FNs to create predictive models of psychopathology. These tools will be released in
a freely available, containerized software package to ensure frictionless portability across computing platforms
and full reproducibility.
摘要
固有功能连接性磁共振成像是研究脑组织结构的有力工具
人脑的功能网络(FN)。大量和不断积累的证据表明,FNS
在青年中进行可预测的规范性发展,而异常发育与
不同的精神病态。基于图像分析方面的进展的最新工作已经确定,FN在
因人而异的事实。当与大规模神经成像数据集配对时,特定于个人的FN提供
前所未有的转换机会,为开发新的诊断技术提供了可能
神经精神疾病的个性化治疗。然而,特定于人的翻译承诺
FNS目前受到几个障碍的阻碍。首先,当前方法在特定的位置计算个性化的FN
规模,尽管有明确的证据表明,大脑是一个具有层级功能组织的多尺度系统。
其次,为了加强不同主题之间的对应关系,个性化的FN通常在以下项下计算
某些限制,这可能会产生有偏见的结果。第三,深度学习在以下领域取得了喜忧参半的成就
神经成像数据分析部分是因为通常采用自组织网络架构,并且
通过采用预先设计的功能而不是学习的功能,功能学习能力经常被剥夺。第四,到
来自大规模神经成像研究的多个数据集的神经成像测量的正确部位效应
目前的方法通常试图在统计建模之前协调数据,导致有价值的损失
信息。第五,纵向神经影像和临床数据越来越多,但有效的分析
用于纵向数据的工具很少。最后但并非最不重要的一点是,深度学习算法已经发展到
分析fcMRI数据,但通常以文档记录不佳的源代码形式发布,这限制了可重复性和
被翻译研究人员采用。在这项申请中,我们在前一个获奖期的成功基础上,
通过开发、验证和传播表征大脑功能的工具来解决这些限制
个人学科层面的组织。我们将利用对大脑的补充大规模研究
开发以验证我们的方法,并描述FNS的异常发育如何与
青少年精神病理学的主要方面,包括抑郁、焦虑、精神病和ADHD谱系
症状。具体地说,我们将开发新的方法来1)准确地识别无偏见的个性化FN
多尺度的层级组织;2)使用个性化的方法稳健地预测精神症状维度
具有优化的深度神经网络结构和集成的现场效应校正的FNS,以及3)有效
对FNS的纵向数据进行建模,以创建精神病理学的预测模型。这些工具将于年发布
免费提供的集装箱化软件包,可确保计算平台之间的无缝移植
和完全的重复性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Fan其他文献
Yong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Fan', 18)}}的其他基金
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10304463 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10573337 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10630919 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10371213 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Center for Machine Learning in Urology-Scientific Project
泌尿科机器学习中心科学项目
- 批准号:
10260579 - 财政年份:2020
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10632147 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10417107 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10204952 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10006111 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Computer Aided Early Detection and Diagnosis of Alzheimer's Disease
计算机辅助阿尔茨海默病的早期检测和诊断
- 批准号:
7707231 - 财政年份:2009
- 资助金额:
$ 65.34万 - 项目类别:
相似海外基金
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
- 批准号:
ES/Y00860X/1 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
- 批准号:
MR/X034925/1 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
- 批准号:
DE240101039 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Discovery Early Career Researcher Award
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
- 批准号:
BB/Y006496/1 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Research Grant
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
- 批准号:
10984668 - 财政年份:2024
- 资助金额:
$ 65.34万 - 项目类别:
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 65.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluating the impact of changes in the proximity and density of vape retailers around secondary schools in Ontario on adolescent vaping behaviours
评估安大略省中学周围电子烟零售商的距离和密度变化对青少年电子烟行为的影响
- 批准号:
500515 - 财政年份:2023
- 资助金额:
$ 65.34万 - 项目类别:
Operating Grants














{{item.name}}会员




