Computer Aided Early Detection and Diagnosis of Alzheimer's Disease
计算机辅助阿尔茨海默病的早期检测和诊断
基本信息
- 批准号:7707231
- 负责人:
- 金额:$ 10.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2010-01-22
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAlzheimer&aposs DiseaseBiometryBrainBrain DiseasesClassificationCommunitiesComputer AssistedComputer softwareDevelopmentDiagnosisEarly DiagnosisEvolutionFosteringFunctional ImagingGoalsImage AnalysisInterdisciplinary StudyMeasurementMeasuresMedical ImagingMethodsNeurosciencesPatternResearchResearch Project GrantsResearch TrainingResourcesScientistStructureTestingTrainingbaseclinical Diagnosisdiagnostic accuracydisease diagnosisimprovedinteroperabilitymultimodalityneuroimagingnoveltool
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to develop the candidate's ability to perform multidisciplinary research in neuroimage analysis, with emphasis on multivariate neuroimage classification and its application to computer aided early detection and diagnosis of Alzheimer's disease (AD). The research project will focus on the development of novel neuroimage classification algorithms for accurately identifying and measuring brain abnormality in a fully automatic and integrated way. The candidate will develop a general integrated neuroimage classification framework by integrating feature extraction, feature selection, and classification. Within this general framework, a multimodality pattern classification method with improved feature extraction from both structural and functional images will be developed. These multimodality multivariate classification methods will be validated and applied to the neuroimage based studies of early AD diagnosis and longitudinal measurement of brain abnormality related to AD. As part of the proposed KOI application, the candidate seeks didactic training in medical imaging, neuroscience, clinical diagnosis of AD, and biostatistics. The proposed training and research plan will foster the candidate's development into an independent scientist, using neuroimaging and image analysis methods for early detection and diagnosis of Alzheimer's disease.
RELEVANCE: The improved neuroimage classification methods will help early detection and diagnosis of Alzheimer's disease. The release of the fully automatic neuroimage classification software will significantly improve the interoperability and adoptability of high dimensional pattern classification algorithms for neuroimage analysis, and result in enhanced dissemination, adoption, and evolution of such tools and resources by the broader neuroimaging research community.
描述(由申请人提供):本项目的目标是培养候选人在神经影像分析方面进行多学科研究的能力,重点是多变量神经影像分类及其在阿尔茨海默病(AD)计算机辅助早期检测和诊断中的应用。该研究项目将专注于开发新的神经图像分类算法,以便以全自动和集成的方式准确识别和测量大脑异常。候选人将通过集成特征提取,特征选择和分类来开发一个通用的集成神经图像分类框架。在这个总体框架内,将开发一种多模态模式分类方法,改进结构和功能图像的特征提取。这些多模态多变量分类方法将被验证并应用于基于神经影像的AD早期诊断和与AD相关的脑异常纵向测量研究。作为拟议的KOI申请的一部分,候选人寻求医学成像,神经科学,AD临床诊断和生物统计学方面的教学培训。拟议的培训和研究计划将促进候选人发展成为一名独立的科学家,使用神经成像和图像分析方法早期发现和诊断阿尔茨海默病。
相关性:改进的神经图像分类方法将有助于早期发现和诊断阿尔茨海默病。全自动神经影像分类软件的发布将显著提高用于神经影像分析的高维模式分类算法的互操作性和可采用性,并导致更广泛的神经影像研究社区增强此类工具和资源的传播、采用和发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Fan其他文献
Yong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Fan', 18)}}的其他基金
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10304463 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10573337 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10630919 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10371213 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10460612 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Center for Machine Learning in Urology-Scientific Project
泌尿科机器学习中心科学项目
- 批准号:
10260579 - 财政年份:2020
- 资助金额:
$ 10.32万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10632147 - 财政年份:2019
- 资助金额:
$ 10.32万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10417107 - 财政年份:2019
- 资助金额:
$ 10.32万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10204952 - 财政年份:2019
- 资助金额:
$ 10.32万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10006111 - 财政年份:2019
- 资助金额:
$ 10.32万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.32万 - 项目类别:
Research Grant














{{item.name}}会员




