Center for Machine Learning in Urology-Scientific Project
泌尿科机器学习中心科学项目
基本信息
- 批准号:10260579
- 负责人:
- 金额:$ 20.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAlzheimer&aposs DiseaseAnatomyBenignBody mass indexBrainCharacteristicsChildClinicalClinical ResearchClinical TrialsCollaborationsDiagnosisDiagnostic ImagingEmergency department visitEngineeringEventFunctional disorderFutureGoalsGoldHumanHydronephrosisImageIndividualKidneyKidney CalculiLeadLocationLongevityMachine LearningMagnetic Resonance ImagingManualsMeasurementMeasuresMedicalMethodsNephrolithiasisOperative Surgical ProceduresOutcomePainPatientsPatternPediatric HospitalsPennsylvaniaPerformancePhiladelphiaPrediction of Response to TherapyPredictive ValueProbabilityResearchResearch Project GrantsRiskShapesSkinStructureTimeUltrasonographyUniversitiesUrinary CalculiUrinary tractUrologic DiseasesUrologyVariantVisitX-Ray Computed Tomographyautomated algorithmautomated analysisclinical careclinical epidemiologyclinical predictorsdeep learningdeep learning algorithmdensitydisorder riskimaging studyimprovedindividualized medicineinsightmachine learning algorithmmild cognitive impairmentoutcome predictionpoint of carepreventrisk stratificationtooltumorunnecessary treatment
项目摘要
PROJECT SUMMARY
Kidney stones are characterized by the episodic occurrence of debilitating stone events, which lead to painful
passage, emergent visits, and surgery. Proper selection of medical and surgical treatments depends on accurate
assessment of stone characteristics, including size and location. Current methods for quantifying these
characteristics depend on manual measurement by humans, which introduces unnecessary variation, is
laborious, and makes analyzing the large number of imaging studies performed for clinical trials very difficult.
Existing automated measurements are proprietary, only segment (partition) the stone from the surrounding
structures without considering other clinically important features such as hydronephrosis, and are slow. A critical
barrier to effectively implementing individualized therapies that decrease the burden of nephrolithiasis is the lack
of automated analyses of diagnostic imaging that could accurately measure stone and kidney characteristics,
and predict, in real time, an individual’s risk of stone events, such as spontaneous stone passage.
In this Research Project, the Children’s Hospital of Philadelphia (CHOP) and the University of Pennsylvania
(Penn) Center for Machine Learning in Urology (CMLU) forges a collaboration among experts in machine
learning of diagnostic imaging, clinical epidemiology, and benign urologic disease. We build upon our recent
discoveries that machine learning (particularly deep learning) of diagnostic images accurately, reliably, and
rapidly predicts disease risk strata and outcomes. This project uses machine learning of CT to automate
measurement of conventional characteristics of stones (e.g. size, location, and shape) and renal anatomy (e.g.
hydronephrosis, ureteral dilation). We then apply this method to predict spontaneous passage of ureteral stones
for individuals across the lifespan. In doing so, the proposed studies will develop clinically useful open-access
prediction tools that will transform the standard of quantifying urinary stones and, in a fully automated way,
accurately, reliably, and rapidly identify patients with ureteral stones most likely to benefit from early surgical
intervention. In Aim 1, we will use deep learning to automatically segment and measure conventional features
of urinary stones (e.g. size, density) and adjacent renal and ureteral anatomy (e.g. degree of hydronephrosis) in
CT images of 2,000 children and adults evaluated at CHOP and Penn, respectively. In Aim 2, we will use deep
learning to extract informative features from CT images that predict ureteral stone passage for 723 unique
children and adults. The features include conventional features, engineered features, and deep-learning features
that may neither be appreciated by nor be able to be measured by humans. These results would transform
clinical care and research and provide insights into those who would be most likely to benefit from early elective
surgery to remove stones to prevent future pain and emergent visits.
项目摘要
肾结石的特征是剧集发生使人衰弱的石头事件,这导致了痛苦
通过,临时访问和手术。正确选择医疗和手术治疗取决于准确
评估石材特征,包括大小和位置。当前量化这些方法
特征取决于人类的手动测量,引入了不必要的变化,是
费力,并对临床试验进行的大量成像研究非常困难。
现有的自动测量是专有的,只有细分市场(分区)周围的石头
结构没有考虑其他临床上重要的特征,例如肾积水,并且很慢。批判
有效实施减少肾石岩燃烧的个性化疗法的障碍是缺乏
可以准确测量石材和肾脏特征的诊断成像的自动分析
并实时预测个人发生石材事件的风险,例如赞助石通道。
在这个研究项目中,费城儿童医院(CHOP)和宾夕法尼亚大学
(Penn)泌尿外科机器学习中心(CMLU)在机器专家之间建立了合作
学习诊断成像,临床流行病学和良性泌尿科疾病。我们以最新为基础
发现机器学习(部分深度学习)准确,可靠地发现了诊断图像
迅速预测疾病风险层和结果。该项目使用CT的机器学习来自动化
测量石头(例如大小,位置和形状)和肾解剖学(例如,
肾积水,输尿管扩张)。然后,我们应用这种方法来预测输尿管石的自发通道
对于整个生命周期的个人。为此,拟议的研究将开发临床上有用的开放式访问
预测工具将改变量化尿石的标准,并以完全自动化的方式,
准确,可靠,迅速鉴定有输尿管结石的患者,最有可能受益于早期手术
干涉。在AIM 1中,我们将使用深度学习自动细分并测量常规功能
在
分别在Chop和Penn评估的2,000名儿童和成人的CT图像。在AIM 2中,我们将使用深度
学习从CT图像中提取信息的功能,这些特征可预测723独特的输尿管石通道
儿童和成人。这些功能包括常规功能,工程功能和深度学习功能
这可能不会被人类衡量,也不能被人衡量。这些结果将转变
临床护理和研究,并为那些最有可能从早期选修中受益的人提供见解
手术以去除石头,以防止将来的疼痛和紧急访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Fan其他文献
Yong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Fan', 18)}}的其他基金
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10304463 - 财政年份:2021
- 资助金额:
$ 20.59万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10573337 - 财政年份:2021
- 资助金额:
$ 20.59万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10630919 - 财政年份:2021
- 资助金额:
$ 20.59万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10371213 - 财政年份:2021
- 资助金额:
$ 20.59万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10460612 - 财政年份:2021
- 资助金额:
$ 20.59万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10632147 - 财政年份:2019
- 资助金额:
$ 20.59万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10417107 - 财政年份:2019
- 资助金额:
$ 20.59万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10204952 - 财政年份:2019
- 资助金额:
$ 20.59万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10006111 - 财政年份:2019
- 资助金额:
$ 20.59万 - 项目类别:
Computer Aided Early Detection and Diagnosis of Alzheimer's Disease
计算机辅助阿尔茨海默病的早期检测和诊断
- 批准号:
7707231 - 财政年份:2009
- 资助金额:
$ 20.59万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别: