Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
基本信息
- 批准号:10630919
- 负责人:
- 金额:$ 65.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdolescentAdoptedAdoptionAnxietyArchitectureAttention deficit hyperactivity disorderAwardBrainBrain imagingClinical DataCommunicationCommunitiesComputer softwareComputing MethodologiesDataData AnalysesData SetDevelopmentDiagnosticDimensionsEngineeringEnsureEnvironmentFunctional Magnetic Resonance ImagingFutureHumanImageIndividualLearningMagnetic Resonance ImagingMeasurementMeasuresMental DepressionMethodsModelingNatureNeuronsNeurosciencesPaperPennsylvaniaPersonsPhiladelphiaProceduresPsychopathologyPsychosesReproducibilityResearchSiteSource CodeStatistical ModelsSymptomsSystemTechniquesUniversitiesWorkYouthanalytical toolcognitive developmentcohortcomputational platformconnectomedata harmonizationdata structuredeep learningdeep learning algorithmdeep neural networkhuman dataimage processingimprovedintegration siteinterestlarge scale datalearning strategymodel buildingmultiple datasetsmutual learningnetwork architecturenetwork modelsneuralneural network architectureneuroimagingneuropsychiatrynovelnovel diagnosticsopen sourceoutcome predictionpersonalized medicineportabilitypredictive modelingprogramspsychiatric symptomrecurrent neural networksuccesstooltranslational potentialtranslational scientistuser-friendly
项目摘要
ABSTRACT
Intrinsic functional connectivity magnetic resonance imaging is a powerful tool to study the organization of
functional networks (FNs) in the human brain. Rich and accumulating evidence demonstrates that FNs
undergo predictable normative development in youth, and that abnormal development is associated with
diverse psychopathology. Recent work based on advances in image analytics has established that FNs are in
fact person-specific. When paired with large-scale neuroimaging datasets, person-specific FNs provide
unprecedented translational opportunities for the development of new diagnostics that could guide
personalized treatments for neuropsychiatric illnesses. However, the translational promise of person-specific
FNs is at present hindered by several obstacles. First, current methods compute personalized FNs at a specific
scale, despite clear evidence that the brain is a multi-scale system with a hierarchical functional organization.
Second, to enforce correspondence across different subjects personalized FNs are typically computed under
certain constraints, which may yield biased results. Third, deep learning has achieved mixed success in
neuroimaging data analysis partially due to the fact that ad-hoc network architecture is typically adopted and
feature learning capability is often deprived by adopting pre-engineered rather than learned features. Fourth, to
correct site effects of neuroimaging measures from multiple datasets of large-scale neuroimaging studies
current methods typically attempt to harmonize data prior to statistical modeling, resulting in loss of valuable
information. Fifth, longitudinal neuroimaging and clinical data are increasingly available, but effective analytic
tools for longitudinal data are scarce. Last but not least, deep learning algorithms have been developed to
analyze fcMRI data but are often released as poorly documented source code, limiting both reproducibility and
adoption by translational researchers. In this application, we build on the success of the prior award period to
address these limitations by developing, validating, and disseminating tools that characterize brain functional
organization at an individual subject level. We will leverage complementary large-scale studies of brain
development to validate our methods and delineate how abnormal development of FNs is associated with
major dimensions of psychopathology in youth, including depression, anxiety, psychosis, and ADHD-spectrum
symptoms. Specifically, we will develop novel methods to 1) accurately identify bias-free personalized FNs with
a multiscale hierarchical organization; 2) robustly predict psychiatric symptom dimensions using personalized
FNs with optimized deep neural network architecture and integrated site-effect correction, and 3) effectively
model longitudinal data of FNs to create predictive models of psychopathology. These tools will be released in
a freely available, containerized software package to ensure frictionless portability across computing platforms
and full reproducibility.
摘要
内在功能连接性磁共振成像是研究组织的有力工具,
功能网络(Functional Networks,简称FN)。丰富和积累的证据表明,
在青年中经历可预测的规范发展,而异常发展与
不同的精神病理学基于图像分析进展的最新工作已经确定,
事实上,人的具体。当与大规模神经成像数据集配对时,个人特定的FN提供了
为开发新的诊断方法提供了前所未有的转化机会,
神经精神疾病的个性化治疗。然而,特定于人的翻译承诺
FN目前受到几个障碍的阻碍。首先,当前的方法在特定的阈值下计算个性化的FN。
规模,尽管有明确的证据表明,大脑是一个多尺度系统与层次功能组织。
第二,为了在不同主体之间强制对应,个性化FN通常在以下条件下计算:
某些限制,这可能会产生有偏见的结果。第三,深度学习取得了喜忧参半的成功,
神经成像数据分析部分地由于通常采用自组织网络架构的事实,
特征学习能力通常由于采用预先设计的而不是学习的特征而被剥夺。四是大力
从大规模神经影像学研究的多个数据集校正神经影像学测量的部位效应
目前的方法通常试图在统计建模之前协调数据,导致有价值的数据丢失。
信息.第五,纵向神经影像学和临床数据越来越多,但有效的分析
纵向数据的工具很少。最后但并非最不重要的是,深度学习算法已经开发出来,
分析fcMRI数据,但通常作为记录不佳的源代码发布,限制了可重复性和
翻译研究者的采纳。在此应用程序中,我们建立在前一个奖励期的成功基础上,
通过开发、验证和传播表征大脑功能的工具来解决这些局限性
在个体主体层面上。我们将利用互补的大规模大脑研究,
发展,以验证我们的方法,并描绘FN的异常发展是如何与
青年精神病理学的主要方面,包括抑郁、焦虑、精神病和ADHD谱
症状具体来说,我们将开发新的方法,以1)准确地识别无偏见的个性化FN,
多尺度层次组织; 2)使用个性化的
具有优化的深度神经网络架构和集成的站点效应校正的FN,以及3)有效地
对FN的纵向数据进行建模,以创建精神病理学的预测模型。这些工具将于
一个免费提供的容器化软件包,可确保跨计算平台的无摩擦可移植性
和完全再现性。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classifying and characterizing nicotine use disorder with high accuracy using machine learning and resting-state fMRI.
- DOI:10.1111/adb.12644
- 发表时间:2019-07
- 期刊:
- 影响因子:3.4
- 作者:Wetherill RR;Rao H;Hager N;Wang J;Franklin TR;Fan Y
- 通讯作者:Fan Y
Parameter-Free Centralized Multi-Task Learning for Characterizing Developmental Sex Differences in Resting State Functional Connectivity
- DOI:10.1609/aaai.v32i1.11907
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Xiaofeng Zhu;Hongming Li;Yong Fan
- 通讯作者:Xiaofeng Zhu;Hongming Li;Yong Fan
Improving Diagnosis of Autism Spectrum Disorder and Disentangling its Heterogeneous Functional Connectivity Patterns Using Capsule Networks.
- DOI:10.1109/isbi45749.2020.9098524
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Jiao Z;Li H;Fan Y
- 通讯作者:Fan Y
Riccati-Regularized Precision Matrices for Neuroimaging.
- DOI:10.1007/978-3-319-59050-9_22
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:Honnorat N;Davatzikos C
- 通讯作者:Davatzikos C
Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study.
电休克治疗引起的大脑功能连接可预测精神分裂症患者的治疗效果:一项多变量模式识别研究
- DOI:10.1038/s41537-017-0023-7
- 发表时间:2017
- 期刊:
- 影响因子:5.4
- 作者:Li P;Jing RX;Zhao RJ;Ding ZB;Shi L;Sun HQ;Lin X;Fan TT;Dong WT;Fan Y;Lu L
- 通讯作者:Lu L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Fan其他文献
Yong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Fan', 18)}}的其他基金
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10304463 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10573337 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10371213 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10460612 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Center for Machine Learning in Urology-Scientific Project
泌尿科机器学习中心科学项目
- 批准号:
10260579 - 财政年份:2020
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10632147 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10417107 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10204952 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10006111 - 财政年份:2019
- 资助金额:
$ 65.34万 - 项目类别:
Computer Aided Early Detection and Diagnosis of Alzheimer's Disease
计算机辅助阿尔茨海默病的早期检测和诊断
- 批准号:
7707231 - 财政年份:2009
- 资助金额:
$ 65.34万 - 项目类别:
相似海外基金
Enhancing Structural Competency in School-Based Health Centers to Address LGBTQ+ Adolescent Health Equity
增强校本健康中心的结构能力,以解决 LGBTQ 青少年健康公平问题
- 批准号:
10608426 - 财政年份:2023
- 资助金额:
$ 65.34万 - 项目类别:
Application and feasability of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care - a pilot study
简短的数字筛查工具的应用和可行性,以解决儿科医疗中父母和青少年烟草和电子烟的使用问题 - 一项试点研究
- 批准号:
486580 - 财政年份:2022
- 资助金额:
$ 65.34万 - 项目类别:
Studentship Programs
Co-design of an intervention to address alcohol use among adolescent boys and young men in Tanzania
共同设计一项干预措施,解决坦桑尼亚青春期男孩和年轻男性的饮酒问题
- 批准号:
MR/V032380/1 - 财政年份:2022
- 资助金额:
$ 65.34万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Research Grant
Application of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care
应用简短的数字筛查工具来解决儿科医疗中父母和青少年烟草和电子烟的使用问题
- 批准号:
455984 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Operating Grants
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 65.34万 - 项目类别:
Research Grant
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10057761 - 财政年份:2020
- 资助金额:
$ 65.34万 - 项目类别:
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10213683 - 财政年份:2020
- 资助金额:
$ 65.34万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 65.34万 - 项目类别:
Designing targeted interventions to address HIV vulnerabilities and improve clinical outcomes among conflict affected adolescent girls and young women under 25 in Northern Uganda
设计有针对性的干预措施,以解决乌干达北部受冲突影响的少女和 25 岁以下年轻妇女的艾滋病毒脆弱性并改善临床结果
- 批准号:
356145 - 财政年份:2016
- 资助金额:
$ 65.34万 - 项目类别:
Operating Grants














{{item.name}}会员




