Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
基本信息
- 批准号:10417107
- 负责人:
- 金额:$ 72.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAttention deficit hyperactivity disorderBase of the BrainBehavioralBrainBrain imagingBudgetsClinicalCodeCommunicationCommunitiesComputer softwareDataData SetDependenceDevice or Instrument DevelopmentDevicesDockingEffectivenessElectric StimulationEnsureEnvironmentEpilepsyFeedbackFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingImageImaging TechniquesIndividualInvestigationMRI ScansMajor Depressive DisorderMemory impairmentMental HealthMental disordersMethodsMood DisordersMovementNeuroanatomyNeurodegenerative DisordersNeurosciencesNoiseOutcomeParticipantPathway AnalysisPatientsPatternPattern RecognitionPerformancePersonsProtocols documentationReproducibilityResearchRestRunningSchizophreniaScientistSeizuresSeriesShort-Term MemorySignal TransductionSiteSleepSource CodeStressStructureTechniquesTestingTimeTranscranial magnetic stimulationTreatment outcomeVariantawakebasedesignhealth applicationimaging studyimplantable deviceimprovedmultidisciplinarymultimodalityneuropsychiatryneuroregulationnext generationnoninvasive brain stimulationnovelnovel strategiesopen sourceportabilityrecurrent neural networkrepetitive transcranial magnetic stimulationspatiotemporaltool
项目摘要
ABSTRACT
The proposed project is designed to increase precision and responsiveness in transcranial magnetic
stimulation therapies across the neuropsychiatric spectrum and specifically in working memory deficits which
are common across a variety of neuropsychiatric conditions. Cutting edge functional imaging studies suggest
that using multiple types of imaging datasets yield more reliable estimates of brain network communication.
Our methods yield a combined resting and task fMRI functional network mapping individualized for each
participant that will allow precise identification of brain stimulation targets associated with optimal working
memory performance (Aim 1). To close the loop in designing TMS protocols that respond to an individual
person's brain activation state, we will also develop and test a real-time brain decoder to determine when
optimal working memory states are online (Aim 2). By iteratively testing excitatory neuromodulation
frequencies at this stimulation site and capturing the relative movement of brain states towards or away from
optimal working memory states, we will settle on the optimal frequency for augmenting working memory
performance in each individual (Aim 3). We will validate this approach by administering either the `best' or
`worst' (random assignment to each participant) neuromodulation protocol across several days then testing
working memory performance and brain activation in a final MRI scan session. The multi-modal based TMS
targeting and individualized frequency optimization techniques will be based on our findings and packaged into
a combined software suite in Docker containers made available to the scientific and clinical community at the
conclusion of this project (Aim 4).
摘要
拟议的项目旨在提高经颅磁的精确度和响应性。
神经精神病学领域的刺激疗法,特别是在工作记忆缺陷方面
在各种神经精神疾病中都很常见。尖端功能成像研究表明
使用多种类型的成像数据集可以对大脑网络通信产生更可靠的估计。
我们的方法产生了针对每个个体的组合的静息和任务fMRI功能网络映射
参与者,将允许精确识别与最佳工作相关的大脑刺激目标
内存性能(目标1)。在设计响应个人的TMS协议时闭合循环
人的大脑的激活状态,我们还将开发和测试一个实时的大脑解码器,以确定何时
最佳工作记忆状态是在线的(目标2)。通过反复测试兴奋性神经调节
这个刺激部位的频率,并捕捉大脑状态朝向或远离的相对运动
最佳工作记忆状态,我们将确定增加工作记忆的最佳频率
每个人的表现(目标3)。我们将通过管理“Best”或
“最差的”(随机分配给每个参与者)几天的神经调节方案,然后测试
在最后一次核磁共振扫描过程中的工作记忆表现和大脑激活。基于多模式的交通管理系统
定向和个性化频率优化技术将基于我们的研究结果,并打包成
Docker Containers中的组合软件套件提供给科学和临床社区,网址为
本项目的结论(目标4)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Fan其他文献
Yong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Fan', 18)}}的其他基金
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10304463 - 财政年份:2021
- 资助金额:
$ 72.83万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10573337 - 财政年份:2021
- 资助金额:
$ 72.83万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10630919 - 财政年份:2021
- 资助金额:
$ 72.83万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10371213 - 财政年份:2021
- 资助金额:
$ 72.83万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10460612 - 财政年份:2021
- 资助金额:
$ 72.83万 - 项目类别:
Center for Machine Learning in Urology-Scientific Project
泌尿科机器学习中心科学项目
- 批准号:
10260579 - 财政年份:2020
- 资助金额:
$ 72.83万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10632147 - 财政年份:2019
- 资助金额:
$ 72.83万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10204952 - 财政年份:2019
- 资助金额:
$ 72.83万 - 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
- 批准号:
10006111 - 财政年份:2019
- 资助金额:
$ 72.83万 - 项目类别:
Computer Aided Early Detection and Diagnosis of Alzheimer's Disease
计算机辅助阿尔茨海默病的早期检测和诊断
- 批准号:
7707231 - 财政年份:2009
- 资助金额:
$ 72.83万 - 项目类别:
相似海外基金
Understanding the relationship between cannabis use and attention-deficit/hyperactivity disorder
了解大麻使用与注意力缺陷/多动症之间的关系
- 批准号:
2874883 - 财政年份:2023
- 资助金额:
$ 72.83万 - 项目类别:
Studentship
RestEaze: A Novel Wearable Device and Mobile Application to Improve the Diagnosis and Management of Restless Legs Syndrome in Pediatric Patients with Attention Deficit/Hyperactivity Disorder
RestEaze:一种新型可穿戴设备和移动应用程序,可改善注意力缺陷/多动症儿科患者不宁腿综合症的诊断和管理
- 批准号:
10760442 - 财政年份:2023
- 资助金额:
$ 72.83万 - 项目类别:
Diagnosis and Treatment of Adult Attention-Deficit/Hyperactivity Disorder: A Workshop
成人注意力缺陷/多动症的诊断和治疗:研讨会
- 批准号:
10825708 - 财政年份:2023
- 资助金额:
$ 72.83万 - 项目类别:
Maternal Attention Deficit Hyperactivity Disorder (m-ADHD): Mental Health, Pregnancy and Infant Outcomes
母亲注意力缺陷多动障碍 (m-ADHD):心理健康、妊娠和婴儿结局
- 批准号:
488888 - 财政年份:2023
- 资助金额:
$ 72.83万 - 项目类别:
Operating Grants
SBIR Phase I: A novel caregiver-centered mobile app and artificial intelligence (AI) coaching intervention for pediatric Attention Deficit Hyperactivity Disorder (ADHD)
SBIR 第一阶段:一款新颖的以护理人员为中心的移动应用程序和人工智能 (AI) 辅导干预儿童注意力缺陷多动障碍 (ADHD)
- 批准号:
2335539 - 财政年份:2023
- 资助金额:
$ 72.83万 - 项目类别:
Standard Grant
Machine Learning Methods to Develop and Deploy Real-Time Risk Surveillance for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder from the Electronic Health Record
用于开发和部署电子健康记录中自闭症谱系障碍和注意力缺陷多动障碍实时风险监测的机器学习方法
- 批准号:
10449468 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
Defining Embodied Characteristics of Decision Making in Attention Deficit Hyperactivity Disorder
定义注意力缺陷多动障碍决策的具体特征
- 批准号:
10316100 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
Do Cerebrovascular Factors mediate the possible link between later-life Attention-Deficit/Hyperactivity Disorder and the development of Lewy Body Diseases?
脑血管因素是否介导晚年注意力缺陷/多动障碍与路易体疾病发展之间的可能联系?
- 批准号:
460431 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
The biological connection between educational attainment and attention-deficit/hyperactivity disorder in contrasting environments
对比环境中教育程度与注意力缺陷/多动症之间的生物学联系
- 批准号:
10677008 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
Conceptualising and Measuring Attention-Deficit Hyperactivity Disorder (ADHD) Across the Lifespan
在整个生命周期中概念化和测量注意力缺陷多动障碍 (ADHD)
- 批准号:
2689864 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
Studentship














{{item.name}}会员




