A Machine Learning driven flow modelling of fragmented rocks in cave mining
机器学习驱动的洞穴采矿中碎石流动建模
基本信息
- 批准号:LP200100038
- 负责人:
- 金额:$ 36.64万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Linkage Projects
- 财政年份:2020
- 资助国家:澳大利亚
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop an integrated method that uses micro scale and macro scale information to predict block scale behaviour so that a better cave mining design can be established. The role of various mineral composition on the energy storage and fracture properties of rocks will be investigated to examine rock fragmentation for block cave mining. Later Machine Learning based models will be developed to establish various predictive models for Block Scale rock mass behaviour and caveability of ore deposit. Finally, we will develop a new constitutive model based on a dual damage concept that will capture the rock fragmentation and simulate the cave propagation in a large scale mine layout using Smoothed-particle hydrodynamics.
该项目旨在开发一种综合方法,利用微观尺度和宏观尺度的信息来预测块体尺度的行为,以便制定更好的洞穴采矿设计。将研究各种矿物成分对岩石的能量储存和断裂特性的作用,以检查块体洞穴采矿的岩石破碎。随后将开发基于机器学习的模型,以建立块体规模岩体行为和矿石存款可崩性的各种预测模型。最后,我们将开发一个新的本构模型的基础上的双重损伤的概念,将捕获岩石破碎和模拟洞穴的传播在一个大规模的矿山布局使用光滑粒子流体动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A/Prof Murat Karakus其他文献
A/Prof Murat Karakus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('A/Prof Murat Karakus', 18)}}的其他基金
Multi-phase modelling and characterisation of mudrush hazard in cave mining
洞穴采矿中泥石流灾害的多相建模和表征
- 批准号:
LP220200792 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Linkage Projects
A new damage model for rock burst in hard rocks during deep mining
深部开采硬岩岩爆损伤新模型
- 批准号:
LP150100539 - 财政年份:2016
- 资助金额:
$ 36.64万 - 项目类别:
Linkage Projects
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 36.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 36.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301172 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Continuing Grant
CAREER: Towards Provenance-Driven Understanding of Machine Learning Robustness
职业:对机器学习鲁棒性的起源驱动理解
- 批准号:
2238084 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Continuing Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
- 批准号:
2238415 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Continuing Grant
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
- 批准号:
23K13239 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 36.64万 - 项目类别:
Operating Grants