Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
基本信息
- 批准号:10475648
- 负责人:
- 金额:$ 100.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Abdominal PainAccountingAmericanArtificial IntelligenceBiologicalBiological MarkersBiopsyCancer EtiologyCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicalCollectionDataData SetDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiseaseEarly DiagnosisEarly treatmentEmergency department visitEnrollmentEpidemiologyEyeFutureGenderGoalsHeadImageImage AnalysisIncidenceIndividualLaboratoriesLow PrevalenceMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasManualsMedical centerModelingMorphologyOperative Surgical ProceduresPancreasPancreatic Ductal AdenocarcinomaPancreatic ductPatientsReaderResectableRiskScanningScreening procedureShapesStatistical Data InterpretationSurvival RateSymptomsTail of pancreasTechniquesTestingTextureTimeTrainingTraining TechnicsUnited StatesValidationVisitWomanX-Ray Computed Tomographyabdominal CTartificial intelligence algorithmautomated segmentationbaseclinically significantcomorbiditydeep learningexperiencefollow-uphigh riskhuman errorimaging studyimprovedlarge datasetsmenmortalitypancreas imagingpredictive modelingradiologistradiomicsrisk predictionrisk stratificationtumor
项目摘要
The objective of the proposed project is to develop a Pancreatic Ductal Adenocarcinoma (PDAC) prediction
model to identify individuals who have high risk for PDAC in the next 3 years through Artificial Intelligence (AI)
analysis of pre-diagnostic CT images and non-imaging factors. PDAC is the fourth leading cause of cancer-
related deaths in both men and women in the United States despite its low incidence rate. The 5-year survival
rate for all stages of PDAC is 10% but can be as high as 50% with early-stage diagnosis. Therefore,
identification of individuals at high risk for PDAC has high clinical significance as follow-up imaging
examinations or biopsy may assist in early detection and allow surgical intervention while the tumors are still
resectable. However, PDAC prediction is difficult due to the lack of reliable screening tools, the absence of
sensitive and specific symptoms and biomarkers, and low prevalence.
Abdominal pain is the single most common reason that Americans visit the emergency room (ER), where
an abdominal Computed Tomography (CT) scan is usually performed. Even though most scans don’t show
any signs of cancer visible to the naked eyes of radiologists, some subjects eventually develop PDAC in the
next few years. These pre-diagnostic CT images provide critical morphological information associated with
biological changes at the pre-cancer or early cancer stage, which can be extracted using AI to predict PDAC
risk. Therefore, the objective of the proposed project is to uncover unique features in pre-diagnostic images
using AI and develop PDAC prediction model based on these features. Non-imaging factors such as
demographic, epidemiologic, and anthropometric factors, clinical comorbidities, and laboratory tests will be
included in the model to improve the prediction accuracy. The primary hypotheses are a) AI allows extraction
of unique image features in pre-diagnostic CT images associated with pre-cancer or early cancer biological
changes that are invisible to naked eyes and b) the combination of pre-diagnostic image features and non-
imaging factors improves the accuracy of PDAC risk stratification and prediction over that using conventional
non-imaging factors alone. To verify these hypotheses, we will retrospectively evaluate CT pancreatic images
obtained up to 3 years prior to PDAC diagnosis that were deemed non-cancerous by radiologists. A group of
subjects who underwent similar imaging studies for non-gastrointestinal disorders and were age/gender
matched with pre-diagnostic imaging will serve as healthy controls. Accurately stratifying high risk individuals
may allow for early detection of PDAC in the future. A major challenge of the project is the scarcity of the
appropriate imaging data because of the low prevalence of PDAC and stringent enrollment criteria. Eight major
medical centers will participate in collection of 1,064 cases. The end point of this project is the development,
training, and validation of an AI-based PDAC prediction model, which will identify individuals who are at high
risk for developing PDAC within the next 3 years.
该项目的目的是发展胰腺导管腺癌(PDAC)的预测
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debiao Li其他文献
Debiao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debiao Li', 18)}}的其他基金
Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
- 批准号:
10693185 - 财政年份:2021
- 资助金额:
$ 100.05万 - 项目类别:
An Accurate Non-Contrast-Enhanced Cardiac MRI Method for Imaging Chronic Myocardial Infarctions: Technical Developments to Rapid Clinical Validation
用于慢性心肌梗塞成像的准确非增强心脏 MRI 方法:快速临床验证的技术发展
- 批准号:
9899302 - 财政年份:2017
- 资助金额:
$ 100.05万 - 项目类别:
4Dx Small Animal Scanner for Functional Lung Imaging
用于功能性肺部成像的 4Dx 小动物扫描仪
- 批准号:
9075865 - 财政年份:2016
- 资助金额:
$ 100.05万 - 项目类别:
Whole-Heart Myocardial Blood Flow Quantification Using MRI
使用 MRI 定量全心心肌血流量
- 批准号:
9226051 - 财政年份:2015
- 资助金额:
$ 100.05万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10689204 - 财政年份:2014
- 资助金额:
$ 100.05万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10454354 - 财政年份:2014
- 资助金额:
$ 100.05万 - 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
- 批准号:
8973293 - 财政年份:2009
- 资助金额:
$ 100.05万 - 项目类别:
Flow Sensitive SSFP for Non-Contrast MRA and Vessel Wall Imaging
用于非对比 MRA 和血管壁成像的流量敏感 SSFP
- 批准号:
7644221 - 财政年份:2009
- 资助金额:
$ 100.05万 - 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
- 批准号:
9300995 - 财政年份:2009
- 资助金额:
$ 100.05万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 100.05万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 100.05万 - 项目类别:














{{item.name}}会员




