Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
基本信息
- 批准号:10693185
- 负责人:
- 金额:$ 93.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Abdominal PainAccountingAgeAmericanArtificial IntelligenceBiologicalBiological MarkersBiopsyCancer EtiologyCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicalCollectionDataData SetDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiseaseEarly DiagnosisEarly treatmentEmergency department visitEnrollmentEpidemiologyEyeFutureGenderGoalsHeadImageImage AnalysisIncidenceIndividualLaboratoriesLow PrevalenceMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasManualsMedical centerModelingMorphologyOperative Surgical ProceduresPancreasPancreatic Ductal AdenocarcinomaPancreatic ductPatientsReaderResectableRiskScanningScreening procedureShapesStatistical Data InterpretationSurvival RateSymptomsTailTechniquesTestingTextureTimeTrainingTraining TechnicsUnited StatesValidationVisitWomanX-Ray Computed Tomographyabdominal CTartificial intelligence algorithmautomated segmentationclinically significantcomorbiditydeep learningexperiencefollow-uphigh riskhigh risk populationhuman errorimaging studyimprovedlarge datasetsmenmortalitypancreas imagingpredictive modelingpremalignantradiologistradiomicsrisk predictionrisk stratificationtumor
项目摘要
The objective of the proposed project is to develop a Pancreatic Ductal Adenocarcinoma (PDAC) prediction
model to identify individuals who have high risk for PDAC in the next 3 years through Artificial Intelligence (AI)
analysis of pre-diagnostic CT images and non-imaging factors. PDAC is the fourth leading cause of cancer-
related deaths in both men and women in the United States despite its low incidence rate. The 5-year survival
rate for all stages of PDAC is 10% but can be as high as 50% with early-stage diagnosis. Therefore,
identification of individuals at high risk for PDAC has high clinical significance as follow-up imaging
examinations or biopsy may assist in early detection and allow surgical intervention while the tumors are still
resectable. However, PDAC prediction is difficult due to the lack of reliable screening tools, the absence of
sensitive and specific symptoms and biomarkers, and low prevalence.
Abdominal pain is the single most common reason that Americans visit the emergency room (ER), where
an abdominal Computed Tomography (CT) scan is usually performed. Even though most scans don’t show
any signs of cancer visible to the naked eyes of radiologists, some subjects eventually develop PDAC in the
next few years. These pre-diagnostic CT images provide critical morphological information associated with
biological changes at the pre-cancer or early cancer stage, which can be extracted using AI to predict PDAC
risk. Therefore, the objective of the proposed project is to uncover unique features in pre-diagnostic images
using AI and develop PDAC prediction model based on these features. Non-imaging factors such as
demographic, epidemiologic, and anthropometric factors, clinical comorbidities, and laboratory tests will be
included in the model to improve the prediction accuracy. The primary hypotheses are a) AI allows extraction
of unique image features in pre-diagnostic CT images associated with pre-cancer or early cancer biological
changes that are invisible to naked eyes and b) the combination of pre-diagnostic image features and non-
imaging factors improves the accuracy of PDAC risk stratification and prediction over that using conventional
non-imaging factors alone. To verify these hypotheses, we will retrospectively evaluate CT pancreatic images
obtained up to 3 years prior to PDAC diagnosis that were deemed non-cancerous by radiologists. A group of
subjects who underwent similar imaging studies for non-gastrointestinal disorders and were age/gender
matched with pre-diagnostic imaging will serve as healthy controls. Accurately stratifying high risk individuals
may allow for early detection of PDAC in the future. A major challenge of the project is the scarcity of the
appropriate imaging data because of the low prevalence of PDAC and stringent enrollment criteria. Eight major
medical centers will participate in collection of 1,064 cases. The end point of this project is the development,
training, and validation of an AI-based PDAC prediction model, which will identify individuals who are at high
risk for developing PDAC within the next 3 years.
拟议项目的目标是开发胰腺导管腺癌(PDAC)的预测
通过人工智能(AI)识别未来3年内PDAC高危人群的模型
诊断前CT影像与非影像因素的分析。PDAC是导致癌症的第四大原因-
尽管美国的发病率很低,但男性和女性的相关死亡人数都很少。五年的生存时间
PDAC所有阶段的发病率为10%,但早期诊断的发病率可高达50%。因此,
随着影像随访,识别PDAC高危个体具有很高的临床意义
检查或活组织检查可能有助于早期发现,并允许在肿瘤仍然存在的情况下进行手术治疗
可切除的。然而,PDAC的预测是困难的,因为缺乏可靠的筛查工具,缺乏
敏感和特异的症状和生物标志物,以及低患病率。
腹痛是美国人去急诊室(ER)最常见的原因,在那里
通常要进行腹部计算机断层扫描。即使大多数扫描都没有显示
放射科医生肉眼可见的任何癌症迹象,一些受试者最终会在
接下来的几年。这些诊断前的CT图像提供了与
癌前或癌症早期的生物学变化,可使用人工智能提取以预测PDAC
风险。因此,拟议项目的目标是发现诊断前图像的独特特征
利用人工智能技术,开发基于这些特征的PDAC预测模型。非成像因素,如
人口学、流行病学和人体测量学因素、临床合并症和实验室检查将
包括在模型中,以提高预测精度。主要假设是a)人工智能允许提取
与癌前或早期癌生物学相关的诊断前CT图像中的独特图像特征
肉眼看不到的变化以及b)诊断前图像特征和非诊断图像特征的组合
与常规方法相比,影像因素提高了PDAC风险分层和预测的准确性
仅有非成像因素。为了验证这些假设,我们将回顾评估CT胰腺图像
在PDAC诊断之前最多3年获得,被放射科医生认为是非癌症的。一群
接受过类似的非胃肠道疾病的影像研究的受试者,年龄/性别
与诊断前影像相匹配的患者将作为健康对照。准确划分高危人群
可能允许在未来及早发现PDAC。该项目的一个主要挑战是缺乏
合适的影像数据,因为PDAC的患病率很低,而且招生标准严格。八大
医疗中心将参与1064例病例的收集。这个项目的终点是开发,
培训,并验证基于人工智能的PDAC预测模型,该模型将识别处于兴奋状态的个人
在未来3年内开发PDAC的风险。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images.
- DOI:10.1117/1.jmi.9.2.024002
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Qureshi TA;Lynch C;Azab L;Xie Y;Gaddam S;Pandol SJ;Li D
- 通讯作者:Li D
Segmentation of Pancreatic Subregions in Computed Tomography Images.
计算机断层扫描图像中胰腺子区域的分割。
- DOI:10.3390/jimaging8070195
- 发表时间:2022-07-12
- 期刊:
- 影响因子:3.2
- 作者:
- 通讯作者:
Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images.
- DOI:10.3233/cbm-210273
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Qureshi, Touseef Ahmad;Gaddam, Srinivas;Wachsman, Ashley Max;Wang, Lixia;Azab, Linda;Asadpour, Vahid;Chen, Wansu;Xie, Yibin;Wu, Bechien;Pandol, Stephen Jacob;Li, Debiao
- 通讯作者:Li, Debiao
Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review.
- DOI:10.21037/cco-21-117
- 发表时间:2022-03
- 期刊:
- 影响因子:2.8
- 作者:Qureshi, Touseef Ahmad;Javed, Sehrish;Sarmadi, Tabasom;Pandol, Stephen Jacob;Li, Debiao
- 通讯作者:Li, Debiao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debiao Li其他文献
Debiao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debiao Li', 18)}}的其他基金
Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
- 批准号:
10475648 - 财政年份:2021
- 资助金额:
$ 93.44万 - 项目类别:
An Accurate Non-Contrast-Enhanced Cardiac MRI Method for Imaging Chronic Myocardial Infarctions: Technical Developments to Rapid Clinical Validation
用于慢性心肌梗塞成像的准确非增强心脏 MRI 方法:快速临床验证的技术发展
- 批准号:
9899302 - 财政年份:2017
- 资助金额:
$ 93.44万 - 项目类别:
4Dx Small Animal Scanner for Functional Lung Imaging
用于功能性肺部成像的 4Dx 小动物扫描仪
- 批准号:
9075865 - 财政年份:2016
- 资助金额:
$ 93.44万 - 项目类别:
Whole-Heart Myocardial Blood Flow Quantification Using MRI
使用 MRI 定量全心心肌血流量
- 批准号:
9226051 - 财政年份:2015
- 资助金额:
$ 93.44万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10689204 - 财政年份:2014
- 资助金额:
$ 93.44万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10454354 - 财政年份:2014
- 资助金额:
$ 93.44万 - 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
- 批准号:
8973293 - 财政年份:2009
- 资助金额:
$ 93.44万 - 项目类别:
Flow Sensitive SSFP for Non-Contrast MRA and Vessel Wall Imaging
用于非对比 MRA 和血管壁成像的流量敏感 SSFP
- 批准号:
7644221 - 财政年份:2009
- 资助金额:
$ 93.44万 - 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
- 批准号:
9300995 - 财政年份:2009
- 资助金额:
$ 93.44万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 93.44万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 93.44万 - 项目类别:














{{item.name}}会员




