Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images

通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)

基本信息

  • 批准号:
    10693185
  • 负责人:
  • 金额:
    $ 93.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The objective of the proposed project is to develop a Pancreatic Ductal Adenocarcinoma (PDAC) prediction model to identify individuals who have high risk for PDAC in the next 3 years through Artificial Intelligence (AI) analysis of pre-diagnostic CT images and non-imaging factors. PDAC is the fourth leading cause of cancer- related deaths in both men and women in the United States despite its low incidence rate. The 5-year survival rate for all stages of PDAC is 10% but can be as high as 50% with early-stage diagnosis. Therefore, identification of individuals at high risk for PDAC has high clinical significance as follow-up imaging examinations or biopsy may assist in early detection and allow surgical intervention while the tumors are still resectable. However, PDAC prediction is difficult due to the lack of reliable screening tools, the absence of sensitive and specific symptoms and biomarkers, and low prevalence. Abdominal pain is the single most common reason that Americans visit the emergency room (ER), where an abdominal Computed Tomography (CT) scan is usually performed. Even though most scans don’t show any signs of cancer visible to the naked eyes of radiologists, some subjects eventually develop PDAC in the next few years. These pre-diagnostic CT images provide critical morphological information associated with biological changes at the pre-cancer or early cancer stage, which can be extracted using AI to predict PDAC risk. Therefore, the objective of the proposed project is to uncover unique features in pre-diagnostic images using AI and develop PDAC prediction model based on these features. Non-imaging factors such as demographic, epidemiologic, and anthropometric factors, clinical comorbidities, and laboratory tests will be included in the model to improve the prediction accuracy. The primary hypotheses are a) AI allows extraction of unique image features in pre-diagnostic CT images associated with pre-cancer or early cancer biological changes that are invisible to naked eyes and b) the combination of pre-diagnostic image features and non- imaging factors improves the accuracy of PDAC risk stratification and prediction over that using conventional non-imaging factors alone. To verify these hypotheses, we will retrospectively evaluate CT pancreatic images obtained up to 3 years prior to PDAC diagnosis that were deemed non-cancerous by radiologists. A group of subjects who underwent similar imaging studies for non-gastrointestinal disorders and were age/gender matched with pre-diagnostic imaging will serve as healthy controls. Accurately stratifying high risk individuals may allow for early detection of PDAC in the future. A major challenge of the project is the scarcity of the appropriate imaging data because of the low prevalence of PDAC and stringent enrollment criteria. Eight major medical centers will participate in collection of 1,064 cases. The end point of this project is the development, training, and validation of an AI-based PDAC prediction model, which will identify individuals who are at high risk for developing PDAC within the next 3 years.
该项目的目的是发展胰腺导管腺癌(PDAC)的预测 通过人工智能(AI)识别未来3年PDAC高风险个体的模型 分析诊断前CT图像和非影像学因素。PDAC是癌症的第四大病因- 在美国,尽管发病率很低,但男性和女性的相关死亡率都很高。5年生存 PDAC所有阶段的诊断率为10%,但早期诊断可高达50%。因此,我们认为, 识别PDAC高风险个体具有很高的临床意义, 检查或活组织检查可有助于早期发现,并允许在肿瘤仍然存在时进行手术干预。 可切除的然而,由于缺乏可靠的筛查工具,缺乏 敏感和特异的症状和生物标志物,以及低患病率。 腹痛是美国人去急诊室(ER)的最常见原因, 通常进行腹部计算机断层摄影(CT)扫描。尽管大多数扫描并没有显示 尽管放射科医生肉眼可见的任何癌症迹象,但一些受试者最终在肿瘤中发展为PDAC。 未来几年这些诊断前CT图像提供了与以下相关的关键形态学信息: 癌症前期或早期癌症阶段的生物学变化,可以使用AI提取以预测PDAC 风险因此,该项目的目标是揭示诊断前图像的独特功能 并基于这些特征建立PDAC预测模型。非成像因素,如 人口统计学、流行病学和人体测量学因素、临床合并症和实验室检查将 包括在模型中以提高预测精度。主要假设是a)AI允许提取 与癌前或早期癌症生物学特征相关的诊断前CT图像中的独特图像特征 肉眼不可见的变化,以及B)诊断前图像特征和非诊断性图像特征的组合。 影像学因素提高了PDAC危险分层和预测的准确性, 非成像因素单独。为了验证这些假设,我们将回顾性评估CT胰腺图像 在PDAC诊断前最多3年获得,被放射科医生认为是非癌性的。一群 接受过类似非胃肠道疾病成像研究且年龄/性别 与诊断前成像相匹配的将作为健康对照。对高危人群进行准确分层 可以允许在未来早期检测PDAC。该项目的一个主要挑战是缺乏 由于PDAC的低患病率和严格的入组标准,需要适当的成像数据。八大 医疗中心将参与收集一千零六十四个病例。这个项目的终点是发展, 训练和验证基于AI的PDAC预测模型,该模型将识别处于高风险的个体。 在未来三年内开发PDAC的风险。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Segmentation of Pancreatic Subregions in Computed Tomography Images.
计算机断层扫描图像中胰腺子区域的分割。
  • DOI:
    10.3390/jimaging8070195
  • 发表时间:
    2022-07-12
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
  • 通讯作者:
Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images.
Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images.
  • DOI:
    10.3233/cbm-210273
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Qureshi, Touseef Ahmad;Gaddam, Srinivas;Wachsman, Ashley Max;Wang, Lixia;Azab, Linda;Asadpour, Vahid;Chen, Wansu;Xie, Yibin;Wu, Bechien;Pandol, Stephen Jacob;Li, Debiao
  • 通讯作者:
    Li, Debiao
Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review.
  • DOI:
    10.21037/cco-21-117
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Qureshi, Touseef Ahmad;Javed, Sehrish;Sarmadi, Tabasom;Pandol, Stephen Jacob;Li, Debiao
  • 通讯作者:
    Li, Debiao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debiao Li其他文献

Debiao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debiao Li', 18)}}的其他基金

Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
  • 批准号:
    10475648
  • 财政年份:
    2021
  • 资助金额:
    $ 93.44万
  • 项目类别:
An Accurate Non-Contrast-Enhanced Cardiac MRI Method for Imaging Chronic Myocardial Infarctions: Technical Developments to Rapid Clinical Validation
用于慢性心肌梗塞成像的准确非增强心脏 MRI 方法:快速临床验证的技术发展
  • 批准号:
    9899302
  • 财政年份:
    2017
  • 资助金额:
    $ 93.44万
  • 项目类别:
4Dx Small Animal Scanner for Functional Lung Imaging
用于功能性肺部成像的 4Dx 小动物扫描仪
  • 批准号:
    9075865
  • 财政年份:
    2016
  • 资助金额:
    $ 93.44万
  • 项目类别:
Whole-Heart Myocardial Blood Flow Quantification Using MRI
使用 MRI 定量全心心肌血流量
  • 批准号:
    9226051
  • 财政年份:
    2015
  • 资助金额:
    $ 93.44万
  • 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
  • 批准号:
    10689204
  • 财政年份:
    2014
  • 资助金额:
    $ 93.44万
  • 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
  • 批准号:
    10454354
  • 财政年份:
    2014
  • 资助金额:
    $ 93.44万
  • 项目类别:
3.0T Whole-Body Cardiovascular MRI System
3.0T全身心血管核磁共振系统
  • 批准号:
    7842714
  • 财政年份:
    2010
  • 资助金额:
    $ 93.44万
  • 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
  • 批准号:
    8973293
  • 财政年份:
    2009
  • 资助金额:
    $ 93.44万
  • 项目类别:
Flow Sensitive SSFP for Non-Contrast MRA and Vessel Wall Imaging
用于非对比 MRA 和血管壁成像的流量敏感 SSFP
  • 批准号:
    7644221
  • 财政年份:
    2009
  • 资助金额:
    $ 93.44万
  • 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
  • 批准号:
    9300995
  • 财政年份:
    2009
  • 资助金额:
    $ 93.44万
  • 项目类别:

相似海外基金

Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
  • 批准号:
    10100360
  • 财政年份:
    2024
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
  • 批准号:
    24K04974
  • 财政年份:
    2024
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
  • 批准号:
    2312319
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
  • 批准号:
    23K01686
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
  • 批准号:
    23K01692
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
  • 批准号:
    23K01695
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
  • 批准号:
    23K01713
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
  • 批准号:
    23K01715
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 93.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了