Whole-Heart Myocardial Blood Flow Quantification Using MRI

使用 MRI 定量全心心肌血流量

基本信息

  • 批准号:
    9226051
  • 负责人:
  • 金额:
    $ 86.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The broad, long-term objective of the proposed project is to improve the prognosis of patients with myocardial ischemia caused by coronary artery disease (CAD) or coronary microvascular dysfunction (CMD). Early diagnosis of myocardial ischemia caused by CAD is important as both coronary revascularization and medical therapies can significantly reduce morbidity and mortality. CMD is a major cause for myocardial ischemia in the absence of obstructive CAD, particularly in women, due to abnormalities in coronary microcirculation. First- pass myocardial perfusion cardiac magnetic resonance (CMR) is a highly promising technique for detecting regional blood flow deficits caused by ischemia. It does not require ionizing radiation and provides higher spatial resolution than nuclear imaging. Dynamic images acquired during intravenous vasodilator stress delineate regions associated with myocardial ischemia. Despite considerable technical improvements and clinical experience, a recent multicenter multivendor study (MR-IMPACT II) shows that while the sensitivity of CMR to detect ischemia caused by CAD is superior to SPECT (67% vs 59%), specificity is inferior (61% vs 72%). Both sensitivity and specificity of CMR remain relatively low indicating substantial false positive and false negative diagnoses. Several studies using MBF CMR have shown that abnormal MBF can be used to detect ischemia caused by CMD. However, these studies have shown only moderate diagnostic accuracy, indicating the need for major improvements. Major technical limitations of MBF CMR that contribute to inaccurate diagnoses of CAD and CMD include: (i) image artifacts, such as dark rim artifact (DRA) and cardiac and respiratory motion-induced artifacts, which reduce the image quality and diagnostic accuracy; (ii) incomplete coverage of the LV for evaluating total ischemic burden; (iii) inadequate spatial resolution for reliable detection of subendocardial perfusion deficits; and (iv) errors in AIF estimation for flow quantification due to saturation of blood signal intensity at pea enhancement. In the proposed project, we will develop novel techniques to address these limitations (Aim 1). The techniques will be rigorously validated in animals using microsphere measurements as the reference (Aim 2). Finally, the techniques will be tested in CAD and CMD patients using PET and invasive coronary reactivity testing as reference, respectively (Aim 3). The end point of the project is the development and rigorous validation of a new myocardial perfusion quantification CMR method with whole-heart coverage, high isotropic resolution, cardiac phase-resolved acquisition, accurate arterial input estimation while without the requirements of ECG triggering or breath-hold. It is expected that such a technique will significantly improve image quality, reduce technical failures, increase the diagnostic accuracy, and facilitate the eventual adoption of myocardial perfusion CMR as the method of choice for detecting myocardial ischemia. .
描述(由申请人提供):拟议项目的广泛、长期目标是改善冠状动脉疾病(CAD)或冠状动脉微血管功能障碍(CMD)引起的心肌缺血患者的预后。早期诊断CAD引起的心肌缺血很重要,因为冠状动脉血运重建和药物治疗都可以显着降低发病率和死亡率。在没有阻塞性CAD的情况下,CMD是心肌缺血的主要原因,特别是在女性中,由于冠状动脉微循环异常。首过心肌灌注心脏磁共振(CMR)是一种非常有前途的技术,用于检测局部缺血引起的血流障碍。它不需要电离辐射,并提供比核成像更高的空间分辨率。在静脉血管扩张剂负荷期间获得的动态图像描绘与心肌缺血相关的区域。尽管有相当多的技术改进和临床经验,但最近的一项多中心多供应商研究(MR-IMPACT II)显示,CMR检测CAD引起的缺血的灵敏度上级于SPECT(67% vs 59%),特异性较差(61% vs 72%)。CMR的敏感性和特异性仍然相对较低,表明存在大量假阳性和假阴性诊断。几项使用MBF CMR的研究表明,异常MBF可用于检测CMD引起的缺血。然而,这些研究显示只有中等的诊断准确性,表明需要重大改进。导致CAD和CMD诊断不准确的MBF CMR的主要技术局限性包括:(i)图像伪影,如暗缘伪影(Dark Rim Artifact)和心脏和呼吸运动诱导的伪影,其降低了图像质量和诊断准确性;(ii)用于评估总缺血负荷的LV覆盖不完整;(iii)用于可靠检测血管内膜下灌注缺陷的空间分辨率不足;和(四) 由于pea增强时血液信号强度饱和,导致用于流量量化的AIF估计误差。在拟议的项目中,我们将开发新的技术来解决这些限制(目标1)。该技术将在动物中使用微球测量作为参考进行严格验证(目标2)。最后,将分别使用PET和有创冠状动脉反应性测试作为参考,在CAD和CMD患者中测试这些技术(目标3)。该项目的终点是开发和严格验证一种新的心肌灌注定量CMR方法,该方法具有全心脏覆盖、高各向同性分辨率、心脏相位分辨采集、准确的动脉输入估计,同时不需要ECG触发或屏气。预计这种技术将显著提高图像质量,减少技术故障,提高诊断准确性,并促进最终采用心肌灌注CMR作为检测心肌缺血的首选方法。.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debiao Li其他文献

Debiao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debiao Li', 18)}}的其他基金

Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
  • 批准号:
    10475648
  • 财政年份:
    2021
  • 资助金额:
    $ 86.24万
  • 项目类别:
Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
  • 批准号:
    10693185
  • 财政年份:
    2021
  • 资助金额:
    $ 86.24万
  • 项目类别:
An Accurate Non-Contrast-Enhanced Cardiac MRI Method for Imaging Chronic Myocardial Infarctions: Technical Developments to Rapid Clinical Validation
用于慢性心肌梗塞成像的准确非增强心脏 MRI 方法:快速临床验证的技术发展
  • 批准号:
    9899302
  • 财政年份:
    2017
  • 资助金额:
    $ 86.24万
  • 项目类别:
4Dx Small Animal Scanner for Functional Lung Imaging
用于功能性肺部成像的 4Dx 小动物扫描仪
  • 批准号:
    9075865
  • 财政年份:
    2016
  • 资助金额:
    $ 86.24万
  • 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
  • 批准号:
    10689204
  • 财政年份:
    2014
  • 资助金额:
    $ 86.24万
  • 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
  • 批准号:
    10454354
  • 财政年份:
    2014
  • 资助金额:
    $ 86.24万
  • 项目类别:
3.0T Whole-Body Cardiovascular MRI System
3.0T全身心血管核磁共振系统
  • 批准号:
    7842714
  • 财政年份:
    2010
  • 资助金额:
    $ 86.24万
  • 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
  • 批准号:
    8973293
  • 财政年份:
    2009
  • 资助金额:
    $ 86.24万
  • 项目类别:
Flow Sensitive SSFP for Non-Contrast MRA and Vessel Wall Imaging
用于非对比 MRA 和血管壁成像的流量敏感 SSFP
  • 批准号:
    7644221
  • 财政年份:
    2009
  • 资助金额:
    $ 86.24万
  • 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
  • 批准号:
    9300995
  • 财政年份:
    2009
  • 资助金额:
    $ 86.24万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 86.24万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 86.24万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 86.24万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 86.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了